Variables aléatoires discrètes

Nous donnons des exercices corrigés sur les variables aléatoires discrètes. Ce sont des variables aléatoires avec des valeurs dans un ensemble dénombrable (fini ou infini). Nous vous proposons des exercices corrigés sur ces variables. Ce cours est un préliminaire de probabilité.

Exercices corrigés sur les variables aléatoires discrètes

Loi de variable aléatoires

Exercice: Soient $X$ et $Y$ deux variables aléatoires indépendantes suivant des lois géométriques de paramètres $p$ et $q$ éléments de $]0,1[$.

  1. Calculer $\mathbb{P}(X>n)$ pour tout $n\in\mathbb{N}$.
  2. Determiner la loi de $Z=\min(X,Y)$.

Solution: On rappelle qu’une variable aléatoire $X$ suit une loi géométrique de paramètre $p\in ]0,1[$ lorsque celle-ci est a valeurs dans $\mathbb{N}^\ast$ et vérifie: \begin{align*} \mathbb{P}(X=n)=(1-p)^{n-1}p,\quad \forall n\in\mathbb{N}.\end{align*}

  1. On a \begin{align*} (X>n)=\bigcup_{k=n+1}^{+\infty}(X=k).\end{align*} En déduit donc \begin{align*} \mathbb{P}(X>n)&=\sum_{k=n+1}^{+\infty} \mathbb{P}(X=k)\cr &=\sum_{k=n+1}^{+\infty} (1-p)^{k-1}p\cr &= (1-p)^np \sum_{m=0}^{+\infty}(1-q)^m\cr &= (1-p)^np \frac{1}{1-(1-p)}\cr &= (1-p)^n.\end{align*}
  2. Notez que $Z$ est une variable aléatoire puisque c’est la composition de du variable aléatoire $(X,y)$ avec la fonction $\min$ définie sur $\mathbb{R}^2$. Soit $n\in \mathbb{N}$ et calculons $\mathbb{P}(Z=n)$. On remarque tout d’abord que\begin{align*} (Z>n-1)=\left((Z=n)\cup (Z>n)\right).\end{align*} Donc on déduit que \begin{align*} \mathbb{P}(Z=n)=\mathbb{P}(Z>n-1)-\mathbb{P}(Z>n).\end{align*} De plus on a \begin{align*} \mathbb{P}(Z>n)&=\mathbb{P}(X>n,Y>n)=\mathbb{P}(X>n)\mathbb{P}(Y>n)\cr & = (1-p)^n(1-q)^n,\end{align*} d’après la question précédente. Ainsi \begin{align*}\mathbb{P}(Z=n)&=(1-p)^{n-1}(1-q)^{n-1}-(1-p)^n(1-q)^n\cr & =r(1-r)^{n-1},\end{align*} avec $r=p+q-pq$. Cela implique que la variable aléatoire $Z$ suit une loi géométrique de paramètre $r$.

Exercice: Soient $X$ et $Y$ deux variables aléatoires indépendantes suivant des lois de Poisson de paramètres $\lambda$ et $\mu$ strictement positifs.

  1. Déterminer la loi suivie par $X+Y$.
  2. Pour $n\in\mathbb{N},$ identifier la loi de $X$ sachant $(X+Y=n)$.

Solution:

LAISSER UN COMMENTAIRE

S'il vous plaît entrez votre commentaire!
S'il vous plaît entrez votre nom ici

spot_img

More like this

demonstration-du-theoreme-centrale-limite

Démonstration du théorème centrale limite

On propose la démonstration du théorème centrale limite. Il est utiliser pour démontrer le théorème de Weierstrass...
loi-gamma

Loi Gamma

L'une des lois les plus pratiques est la loi gamma. Il est utilisé pour surveiller la durée...
exercices-sur-la-loi-normale

Exercices sur la loi normale

On propose des exercices sur la loi normale. C'est une loi de probabilité symétrique, sa moyenne (moyenne),...