On propose des exercices sur les intégrales de Riemann; en particulier sommes de Riemann, intégration parties et changement de variables. En effet, ces sommes sont importantes pour calculer les limites de suites.
Exercices sur les intégrales de Riemann
N’oubliez pas que contrairement à ce que vous avez vu au lycée, on peut définir l’intégrale d’une fonction bornée sur un intervalle bornée. Donc pour qu’une fonction bornée sur un intervalle borné $ [a, b] $ soit intégrable au sens de Riemann si la différence de la somme Darboux supérieure et inférieure tend vers $ 0 $ lorsque le pas de la subdivision qui définit ces sommes tend vers $ 0 $. Cette caractérisation est satisfaite pour fonctions continues ainsi que pour les fonctions monotones.
Conseils pour un calcul efficace des intégrales
Pour calculer une intégrale, il faut toujours se rappeler d’utiliser soit une intégration par parties, soit un changement de variables, soit les propriétés des fonctions usuelles. Voici quelques exemples.
\begin{align*}I&= \int^1_0 xe^{-x}ds=\int^1_0 x (-e^{-x})’dx=\left[-xe^{-x}\right]^{x=1}_{x=0}-\int^1_0 (x)'(-e^{-x})dx\cr &=-e^{-1}+\int^1_0 e^{-x}dx=-e^{-1}+\left[-e^{-x}\right]^{x=1}_{x=0}=1-2e^{-1}.\end{align*} Ici, nous avons fait une intégration par partie. Dans ce cas, la fonction à l’intérieur de l’intégrale prend la forme $f g’$. Pour $f$ on choisit une fonction dont la dérivée est simple.\begin{align*} J=\int^{\frac{pi}{2}}_{\frac{pi}{4}}\cos(x)\ln(\sin{x})dx\end{align*} fonction $x\mapsto \sin(x)$ est continue et strictement positive sur l’intervalle $[\frac{pi}{4},\frac{pi}{2}]$. Donc la fonction $\mapsto \ln(\sin(x))$ est bien définie sur cet intervalle. De plus, on fait le changement de variable $u=\sin(x)$. Donc $du=\cos(x)dx$. En remplaçant dans l’intégrale on trouve \begin{align*}J&=\int^{1}_{\frac{\sqrt{2}}{2}} \ln(u)du=\int^{1}_{\frac{\sqrt{2}}{2}} (u)’\ln(u)du\cr &=\left[ u\ln(u)\right]^{1}_{\frac{\sqrt{2}}{2}}-\int^{1}_{\frac{\sqrt{2}}{2}}u \frac{1}{u}du=-1+\frac{\sqrt{2}}{2}(1+\ln(\sqrt{2})).\end{align*} Soient $a,b\in\mathbb{R}^ast$ tel que $a\neq b$ et $a+b\neq 0$. Calculer la primitive \begin{align*}K= \int \sin(ax)\sin(bx)dx.\end{align*} La méthodes la plus simple est d’utiliser les formules trigonométriques. En effet, on sait que\begin{align*}\sin(ax)\sin(bx)=\frac{1}{2}\left(\cos((a-b)x)-\cos((a+b)x)\right).\end{align*} Ainsi \begin{align*} K=\frac{1}{2}\left(\frac{\sin((a-b)x)}{a-b}-\frac{\sin((a+b)x)}{a+b}\right)+C,\end{align*} avec $C$ une constante réelle.
Exercice: Déterminer la primitive:\begin{align*}I=\int \frac{dx}{ \sqrt[3]{1+x^3}}.\end{align*}
Solution: Nous allons dans un premier temps réécrire $I$ comme une intégrale d’une fraction qui est facile à calculer. Pour cela nous allons faire deux changements de variable. Le premier changement de variable défini par $y=\frac{1}{x}$. Alors $dy= -\frac{dx}{x^2}= – y^2dx$, ce qui implique que $dx=-\frac{dy}{y^2}$. En remplace dans $I$ on trouve \begin{align*}I=-\int \frac{dy}{y^3\sqrt[3]{1+y^3}}.\end{align*} Maintenant le deuxième changement de variable défini par $t=\sqrt[3]{1+y^3}$. Ce qui donne $y^3=t^3-1$. Donc\begin{align*}I=-\int \frac{t}{t^3-1}dt.\end{align*}Il est important de décomposer cette fraction en éléments simple. En effet, on a\begin{align*}\frac{t}{t^3-1}=\frac{1}{3} \left( \frac{1}{t-1}-\frac{t-1}{t^2+t+1}\right).\end{align*}En intégre, on trouve\begin{align*}I=-\frac{1}{3}\ln|t-1|+\frac{1}{3}\int \frac{t-1}{t^2+t+1},dt.\end{align*}D’autre part,\begin{align*}\int \frac{t-1}{t^2+t+1} dt= \frac{1}{2}\int \frac{2t+1}{t^2+t+1}dt -\frac{3}{2}\int \frac{dt}{t^2+t+1}.\end{align*}Donc \begin{align*}I=-\frac{1}{3}\ln|t-1|+\frac{1}{6}\ln(t^2+t+1)-\frac{1}{2} \int \frac{dt}{t^2+t+1}.\end{align*}De plus \begin{align*}\int \frac{dt}{t^2+t+1}&=\int \frac{dt}{\left(t+\frac{1}{2}\right)^2+\frac{3}{4}}\cr &= \frac{4}{3}\int \frac{dt}{\left(\frac{2t+1}{\sqrt{3}}\right)^2+1}.\end{align*} On trouve alors\begin{align*}I=-\frac{1}{3}\ln|t-1|+\frac{1}{6}\ln(t^2+t+1)-\frac{\sqrt{3}}{3} \arctan\left(\frac{2t+1}{\sqrt{3}}\right)+{\rm Cte}.\end{align*}En écrivant $t^3-1=y^3=\frac{1}{x^3}$ on trouve\begin{align*}t=\frac{\sqrt[3]{1+x^3}}{x}.\end{align*}Après tout calcul fait, on trouve\begin{align*}I=-\frac{1}{2}\ln(&\sqrt[3]{1+x^3}-x)-\cr & \frac{\sqrt{3}}{3} \arctan\left(\frac{\sqrt{3}}{3} \frac{2\sqrt[3]{1+x^3}+x}{x}\right)+{\rm Cte}.\end{align*}
Vous pouvez aussi voir les fonctions définies par une intégrale.
Formule de la moyenne pour les intégrales de Riemann
Rappelons la formule de la moyenne. Soit $f,g:[a,b]\to\mathbb{R}$ deux fonctions telles que $g\ge 0,$ $g$ intégrable sur $[a,b],$ et $f$ continue sur $[a,b]$. Alors il existe $cin [a,b]$ tel que\begin{align*}\int^b_a f(t)g(t)dt=f(c)\int^b_a g(t)dt.\end{align*}
Exercice: Calculer la limite \begin{align*}\lim_{x\to 0^+}\int^{3x}_x \frac{dt}{te^t}.\end{align*}
Solution: Nous appliquons la formule moyenne. Pour $x>0,$ on choisit\begin{align*}g(t)=\frac{1}{t},\quad f(t)=e^{-t},\qquad t\in [x,3x].\end{align*} On a $g>0$ et intégrable sur $[x,3x]$ (car elle est continue), et $f$ est continue sur $[x,3x]$. Donc il existe $c_x\in [x,3x]$ (le $c$ depond de $x$ car si $x$ varie le $c$ varie aussi), tel que\begin{align*}\int^{3x}_x \frac{dt}{te^t}&= \int^{3x}_x f(t)g(t)dtcr & = f(c)\int^{3x}_x f(t)g(t)dt\cr & = e^{-c_x}\log(3).\end{align*}Comme $x\le c_x\le 3x$, donc $c_x\to 0$ si $x\to 0$. Donc\begin{align*}\lim_{x\to 0^+}\int^{3x}_x \frac{dt}{te^t}=\log(3).\end{align*}
Sommes de Riemann
Rappelons c’est quoi une somme de Riemann. Soit $f:[a,b]\to\mathbb{R}$ une fonction intégrable sur $[a,b]$ et soit $a=x_0<x_1<\cdots<x_n$ une subdivision de $[a,b]$ definie par $x_n=a+k\frac{b-a}{n}$ pour $k=1,2,\cdots,n$. Alors \begin{align*}\int^b_a f(x)dx=\lim_{n\to\infty}\frac{b-a}{n}\sum_{k=0}^{n} f\left( a+k\frac{b-a}{n}\right).\end{align*}
Un cas particulier important: $a=0$ et $b=1$, donc on a
\begin{align*}\int^1_0 f(x)dx=\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n} f\left( \frac{k}{n}\right).\end{align*}
Application: Pour $\alpha>0,$ calculer la limite de la suite suivante:\begin{align*}u_n=\sum_{k=0}^n \frac{1}{n\alpha+k}.\end{align*}
Solution: On écrit \begin{align*} u_n&=\frac{1}{n} \sum_{k=0}^n \frac{1}{\alpha+\frac{k}{n}}\cr & =\frac{1}{n} \sum_{k=0}^nf\left( \frac{k}{n}\right)\end{align*}avec $f:[0,1]\to\mathbb{R}$ est la fonction continue \begin{align*}f(x)=\frac{1}{\alpha=x}.\end{align*}Ainsi \begin{align*} \lim_{n\to\infty}u_n=\int^1_0 f(x)dx=\log\left(\frac{\alpha+1}{\alpha}\right).\end{align*}
Exercices théoriques sur les intégrales de Riemann
Exercice: Soit $f:[0,1]\to \mathbb{R}$ une fonction intégrable au sense de Riemann. Etudier la limite, lorsque $n$ tend vers $+\infty$, de\begin{align*}I_n=\int^1_0 \frac{f(x)}{1+nx}dx.\end{align*}
Solution: On passe à la valeur absolue pour majorée $I_n$ par une suite qui tend vers $0$ à l’infini. Pour cela il faut se rappeler que toute fonction intégrable au sens de Riemann est bornée. Soit alors $M>0$ tel que $|f(x)|le M$ pour $x\in [0,1]$. On alors \begin{align*}|I_n|&=\left|\int^1_0 \frac{f(x)}{1+nx}dx\right|\cr & \le \int^1_0 \frac{|f(x)|}{1+nx}dx \cr & \le M \int^1_0 \frac{dx}{1+nx}\cr &= \frac{M}{n}\ln(1+n).\end{align*}Comme \begin{align*}\lim_{nto +infty} \frac{M}{n}ln(1+n)=0,\end{align*}alors $I_n$ tend vers $0$ quand $n\to +\infty$.
Pour la notion des intégrales généralisées souvent en utilise les intégrales propre et aussi les critères de comparaisons. Pour d’autres exercices sur les integrales vous pouver voir le site bibmath.