Théorème de transfert

- Advertisement -

L’un des théorèmes clés en probabilité pour le calcul des moyennes des variables aléatoires est le théorème de transfert. En particulier ce théorème est très utile pour calculer la moyenne de l’image d’une variable aléatoire par une fonction mesurable.

Énoncé du théorème de transfert

Dans toute la suite on se place dans un espace de probabilité $(\Omega,\mathscr{A},\mathbb{P})$. La loi d’une variable aléatoire $X$ sera toujours notée par $\mathbb{P}_X$.

Théorème (variables aléatoires réelles): Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire réelle de loi $\mathbb{P}_X$. Si $\varphi:\mathbb{R}\to \mathbb{R}^+$ est une application mesurable alors \begin{align*} \mathbb{E}(\varphi(X))=\int_\Omega \varphi(X(\omega))d\mathbb{P}(\omega)=\int^{+\infty}_{-\infty}\varphi(x)d\mathbb{P}_X(x).\end{align*}

Théorème (variables aléatoires discrètes): Soit $X:\Omega\to\mathbb{N}$ une variable aléatoire et $\varphi:X(\Omega)\to\mathbb{R}$ une application mesurable. Alors la variable aléatoire $\varphi(X)$ admet une espérance, si et seulement si, la série de terme général $\varphi(n)\mathbb{P}(X=n)$ est absolument convergente. Dans ce cas, on a \begin{align*} \mathbb{E}(\varphi(X))=\sum_{n=0}^\infty \varphi(n)\mathbb{P}(X=n).\end{align*}

Remarque: Le théorème de transfert nous dit que pour déterminer l’espérance de la variable aléatoire $\varphi(X)$, il est inutile de calculer la loi de $\varphi(X)$. Il suffit de connaître la loi de $X$.

- Advertisement -

Hot this week

Raisonnement par Récurrence

Le raisonnement par récurrence est une méthode essentielle en...

Puissance d’un Nombre

La notion de puissance d’un nombre est fondamentale en...

Groupes quotients exercices corrigés

Les groupes quotients sont une notion fondamentale en algèbre,...

Groupes monogènes et cycliques

Entrez dans le monde des groupes monogènes et cycliques,...

 Applications linéaires: Cours

Les applications linéaires sont un concept fondamental en mathématiques,...

Topics

Raisonnement par Récurrence

Le raisonnement par récurrence est une méthode essentielle en...

Puissance d’un Nombre

La notion de puissance d’un nombre est fondamentale en...

Groupes quotients exercices corrigés

Les groupes quotients sont une notion fondamentale en algèbre,...

Groupes monogènes et cycliques

Entrez dans le monde des groupes monogènes et cycliques,...

 Applications linéaires: Cours

Les applications linéaires sont un concept fondamental en mathématiques,...

Suites de fonctions

Les suites de fonctions sont un sujet important en...

Résolution des systèmes linéaires

La résolution des systèmes linéaires est une tâche fondamentale...

Calcul des Primitives : Exercices Corrigés

Plongez dans le passionnant domaine du calcul des primitives...

Related Articles

Popular Categories

spot_img
Article précédent
Article suivant