AccueilAgrégationTransformation de Fourier et applications

Transformation de Fourier et applications

-

Nous proposons un aperçu des propriétés sur la transformation de Fourier et applications. En effet, l’une des propriétés de Fourier est de transformer les opérateurs différentiels en opérateurs de multiplication. Par exemple, cela aidera à transformer des équations différentielles partielles en équations différentielles ordinaires. De plus, nous traitons l’équation de la chaleur et l’équation des ondes par ma méthode de Fourier.

Définition de la transformé de Fourier

Soit $f\in L^1(\mathbb{R})$. Alors pout tout $t,x\in\mathbb{R}$ on a $|e^{-itx}f(x)|=|f(x)|$. Ce qui montrer que l’application $x\mapsto e^{-itx}f(x)$ est intégrable, et donc on peut définir l’intégrale suivantes\begin{align*}\mathscr{F}f(t)=\int^{+\infty}_{-\infty}e^{-itx}f(x)dx,\qquad t\in\mathbb{R}.\end{align*}On dit $\mathscr{F}f$ est la transformé de $f$. Il faut noter aussi que\begin{align*}|\mathscr{F}f(t)|le |f|_{L^1},\qquad \forall t\in\mathbb{R}.\end{align*}

Exercice: On note par\begin{align*}\mathcal{C}_0(\mathbb{R}):=\left\{f:\mathbb{R}\to \mathbb{R}, | \; \lim_{t\to\pm\infty} f(t)=0\right\}.\end{align*}Montrer que pour tout $f\in L^1(\mathbb{R})$ on a $\mathscr{F}f\in \mathcal{C}_0(\mathbb{R})$.

Solution: Tout d’abord, montrons que $\mathscr{F}f$ est nul à l’infini. En effet, on sait que $\mathcal{C}_c^1(\mathbb{R}),$ l’ensemble des fonctions de classes $C^1$ à support compact, est dense dans $L^1(\mathbb{R})$. Donc pour $f\in \mathcal{C}_c^1(\mathbb{R}),$ et pour $t\neq 0,$ une intégration par parties nous donne\begin{align*}\mathscr{F}f(t)=\frac{1}{it}\int^{+\infty}_{-\infty}e^{-itx}f'(x)dx.\end{align*}Alors \begin{align*}|\mathscr{F}f(t)|\le \frac{1}{|t|}\|f’\|_{L^1},\qquad \forall t\in\mathbb{R}.\end{align*}Ce qui implique que $\mathscr{F}f(t)\to 0$ quand $|t|\to \infty.$

Maintenant, si $f\in L^1(\mathbb{R}),$ par densité, il existe $(f_n)\subset \mathcal{C}_c^1(\mathbb{R})$ tel que $\|f_n-f\|_{L^1}\to 0$ quand $n\to\infty$. Et donc pour tout $\varepsilon > 0,$ il existe $n_0\in\mathbb{N}$ tel que $\|f_n-f\|_{L^1}\le \frac{\varepsilon}{2}$. Comme $\mathscr{F}$ est un application linéaire, on a\begin{align*}\mathscr{F}(f)(t)= \mathscr{F}(f_{n_0})(t)+ \mathscr{F}(f-f_{n_0})(t).\end{align*}

Par suite \begin{align*}|\mathscr{F}(f)(t)|&\le |\mathscr{F}(f_{n_0})(t)|+ |\mathscr{F}(f-f_{n_0})(t)|\cr & \le \frac{1}{|t|} \|f’_{n_0}\|_{L^1}+\|f-f_{n_0}\|_{L^1}\cr & \le \frac{1}{|t|}\|f’_{n_0}\|_{L^1}+\frac{\varepsilon}{2}.\end{align*} Soit $A=\frac{2}{\varepsilon}\|f’_{n_0}\|_{L^1}$. Alors pour $|t|\ge A$ on a $|\mathscr{F}(f)(t)|\le \varepsilon$.

LAISSER UN COMMENTAIRE

S'il vous plaît entrez votre commentaire!
S'il vous plaît entrez votre nom ici

LATEST POSTS

Raisonnement par Récurrence

Le raisonnement par récurrence est une méthode de démonstration mathématique qui permet d'établir la véracité d'une proposition pour tous les entiers naturels. Cette technique repose...

Puissance d’un Nombre

La puissance d'un nombre est une opération mathématique qui consiste à élever ce nombre à une certaine puissance. Cette opération est représentée par le symbole...

Groupes quotients exercices corrigés

Nous proposons des exercices corrigés sur les groupes quotients. Ces groupes, également appelés groupes factoriels ou groupes cocyliques, sont un concept fondamental en théorie des...

Groupes monogènes et cycliques

Entrez dans le monde des groupes monogènes et cycliques, deux concepts fondamentaux en algèbre. Ce cours offre un résumé complet et des exercices corrigés pour...

Follow us

0FansJ'aime
0SuiveursSuivre
0AbonnésS'abonner

Most Popular