Transformation de Fourier et applications

Nous proposons un aperçu des propriétés sur la transformation de Fourier et applications. En effet, l’une des propriétés de Fourier est de transformer les opérateurs différentiels en opérateurs de multiplication. Par exemple, cela aidera à transformer des équations différentielles partielles en équations différentielles ordinaires. De plus, nous traitons l’équation de la chaleur et l’équation des ondes par ma méthode de Fourier.

Définition de la transformé de Fourier

Soit $f\in L^1(\mathbb{R})$. Alors pout tout $t,x\in\mathbb{R}$ on a $|e^{-itx}f(x)|=|f(x)|$. Ce qui montrer que l’application $x\mapsto e^{-itx}f(x)$ est intégrable, et donc on peut définir l’intégrale suivantes\begin{align*}\mathscr{F}f(t)=\int^{+\infty}_{-\infty}e^{-itx}f(x)dx,\qquad t\in\mathbb{R}.\end{align*}On dit $\mathscr{F}f$ est la transformé de $f$. Il faut noter aussi que\begin{align*}|\mathscr{F}f(t)|le |f|_{L^1},\qquad \forall t\in\mathbb{R}.\end{align*}

Exercice: On note par\begin{align*}\mathcal{C}_0(\mathbb{R}):=\left\{f:\mathbb{R}\to \mathbb{R}, | \; \lim_{t\to\pm\infty} f(t)=0\right\}.\end{align*}Montrer que pour tout $f\in L^1(\mathbb{R})$ on a $\mathscr{F}f\in \mathcal{C}_0(\mathbb{R})$.

Solution: Tout d’abord, montrons que $\mathscr{F}f$ est nul à l’infini. En effet, on sait que $\mathcal{C}_c^1(\mathbb{R}),$ l’ensemble des fonctions de classes $C^1$ à support compact, est dense dans $L^1(\mathbb{R})$. Donc pour $f\in \mathcal{C}_c^1(\mathbb{R}),$ et pour $t\neq 0,$ une intégration par parties nous donne\begin{align*}\mathscr{F}f(t)=\frac{1}{it}\int^{+\infty}_{-\infty}e^{-itx}f'(x)dx.\end{align*}Alors \begin{align*}|\mathscr{F}f(t)|\le \frac{1}{|t|}\|f’\|_{L^1},\qquad \forall t\in\mathbb{R}.\end{align*}Ce qui implique que $\mathscr{F}f(t)\to 0$ quand $|t|\to \infty.$

Maintenant, si $f\in L^1(\mathbb{R}),$ par densité, il existe $(f_n)\subset \mathcal{C}_c^1(\mathbb{R})$ tel que $\|f_n-f\|_{L^1}\to 0$ quand $n\to\infty$. Et donc pour tout $\varepsilon > 0,$ il existe $n_0\in\mathbb{N}$ tel que $\|f_n-f\|_{L^1}\le \frac{\varepsilon}{2}$. Comme $\mathscr{F}$ est un application linéaire, on a\begin{align*}\mathscr{F}(f)(t)= \mathscr{F}(f_{n_0})(t)+ \mathscr{F}(f-f_{n_0})(t).\end{align*}

Par suite \begin{align*}|\mathscr{F}(f)(t)|&\le |\mathscr{F}(f_{n_0})(t)|+ |\mathscr{F}(f-f_{n_0})(t)|\cr & \le \frac{1}{|t|} \|f’_{n_0}\|_{L^1}+\|f-f_{n_0}\|_{L^1}\cr & \le \frac{1}{|t|}\|f’_{n_0}\|_{L^1}+\frac{\varepsilon}{2}.\end{align*} Soit $A=\frac{2}{\varepsilon}\|f’_{n_0}\|_{L^1}$. Alors pour $|t|\ge A$ on a $|\mathscr{F}(f)(t)|\le \varepsilon$.

LAISSER UN COMMENTAIRE

S'il vous plaît entrez votre commentaire!
S'il vous plaît entrez votre nom ici

spot_img

More like this

groupes-quotients-exercices-corriges

Groupes quotients exercices corrigés

Nous proposons des exercices corrigés sur les groupes quotients. Ces groupes, également appelés groupes factoriels ou groupes...
theoreme-de-weierstrass

Théorème de Weierstrass démonstration

Le théorème de Weierstrass, nommé en l'honneur du mathématicien allemand Karl Weierstrass, occupe une place centrale dans...
demonstration-du-theoreme-centrale-limite

Démonstration du théorème centrale limite

On propose la démonstration du théorème centrale limite. Il est utiliser pour démontrer le théorème de Weierstrass...