Le Laplacien en coordonnées Polaires

1 min read
laplacien-en-coordonnees-polaires

On propose un exercice corrigé sur le laplacien en coordonnées polaires. C’est une bonne application du calcul différentiel. D’autre part, on donne une étude de l’opérateur de Laplace pour une classe de fonctions homogènes.

Exercice: Soient $U=\mathbb{R}^2\backslash\{(0,0)\}$ et $f\in \mathcal{C}^2(U,\mathbb{R})$. Le laplacian de $f$ est par définition\begin{align*}\Delta f=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}.\end{align*}

  1. On définit \begin{align*}F:]0,+\infty[\times \mathbb{R}\to \mathbb{R},\quad (r,\theta)\mapsto f(r\cos\theta,r\sin\theta).\end{align*}Déterminer $\Delta f(r\cos\theta,r\sin\theta)$ à l’aide des dérivées partielles de $F$ en $(r,\theta)$.
  2. On dit que $f$ est $\alpha$-homogène ($\alpha\in\mathbb{R}$) si pour tout $x\in U,$ pour tout $\lambda > 0,$ on a $$f(\lambda x)=\lambda^\alpha f(x).$$ Si $f$ est de classe $\mathcal{C}^1$ et $\alpha$-homogène, montrer que $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial x}$ sont $(\alpha-1)$-homogènes.
  3. Déterminer les fonctions $f:U\to \mathbb{R}$ de classe $\mathcal{C}^2$ et homogènes vérifiant\begin{align*}\Delta f(x,y)=\frac{x^2}{x^2+y^2}\quad \text{sur}\quad U.\end{align*}

Laisser un commentaire

Your email address will not be published.

Latest from Blog

Loi Gamma

L’une des lois les plus pratiques est la loi gamma. Il est utilisé pour surveiller la