On propose un exercice corrigé sur le laplacien en coordonnées polaires. C’est une bonne application du calcul différentiel. D’autre part, on donne une étude de l’opérateur de Laplace pour une classe de fonctions homogènes.
Exercice: Soient $U=\mathbb{R}^2\backslash\{(0,0)\}$ et $f\in \mathcal{C}^2(U,\mathbb{R})$. Le laplacian de $f$ est par définition\begin{align*}\Delta f=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}.\end{align*}
- On définit \begin{align*}F:]0,+\infty[\times \mathbb{R}\to \mathbb{R},\quad (r,\theta)\mapsto f(r\cos\theta,r\sin\theta).\end{align*}Déterminer $\Delta f(r\cos\theta,r\sin\theta)$ à l’aide des dérivées partielles de $F$ en $(r,\theta)$.
- On dit que $f$ est $\alpha$-homogène ($\alpha\in\mathbb{R}$) si pour tout $x\in U,$ pour tout $\lambda > 0,$ on a $$f(\lambda x)=\lambda^\alpha f(x).$$ Si $f$ est de classe $\mathcal{C}^1$ et $\alpha$-homogène, montrer que $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial x}$ sont $(\alpha-1)$-homogènes.
- Déterminer les fonctions $f:U\to \mathbb{R}$ de classe $\mathcal{C}^2$ et homogènes vérifiant\begin{align*}\Delta f(x,y)=\frac{x^2}{x^2+y^2}\quad \text{sur}\quad U.\end{align*}