Sur l'optimisation et l'analyse convexe et applications

exercices-optimisation


Nous donnons un aperçu de l’optimisation et de l’analyse convexe. En fait, ce domaine est pratique et utilise en même temps des outils mathématiques profonds. Nous proposons des exercices avec des solutions détaillées pour améliorer les connaissances des élèves sur ce type de mathématiques.

Exercice: Soit $b\in\mathbb{R},\,c\in\mathbb{R}$ et $A\in\mathcal{S}_n^{++}$. Soit la fonction $f:\mathbb{R}^n\to\mathbb{R}$ définie par \begin{align*}f(x)=\frac{1}{2}\langle Ax,x\rangle+\langle b,x\rangle. \end{align*}Minimiser $f$ sur $\mathbb{R}^n$.

Solution: La fonction $f$ est strictement convexe, coercive et définie sur un fermé, donc il existe un seule $x_0\in \mathbb{R}^n$ qui le minimum de $f$. Ce minimum satisfait $\nabla f(x_0)=0$. d’autre part, comme $A$ est symètrique alors la differentielle de $f$ est donnée par (par un calcul simple): pour tout $x,h\in\mathbb{R}^n,$\begin{align*}Df(x).h=\langle Ax+b,h\rangle.\end{align*}Alors $\nabla f(x)=Ax+b$. Ainsi $Ax_0+b=0$, donc $x_0=-A^{-1}b$. Alors\begin{align*}f(x_0)=\frac{1}{2}\langle A^{-1}b,b\rangle+c.\end{align*}

Enregistrer un commentaire

Post a Comment (0)

Plus récente Plus ancienne

ça peut vous intéresser