/

Exercices sur les fonctions convexes

3 mins read
exercices-sur-les-fonctions-convexes

On propose des exercices sur les fonctions convexes. Les fonctions convexes sont à la base des preuves d’inégalités en analyse mathématique. En fait, nous allons démontrer des résultats classiques sur la convexité des fonctions.

Sélection d’exercices sur les fonctions convexes

Exercice: Soit $f:[a,b]\to \mathbb{R}$ une fonction continue par morceaux et $\varphi:\mathbb{R}\to\mathbb{R}$ une fonction convexe continue. En utilisant les somme de Riemann, montrer que\begin{align*}\varphi\left(\frac{1}{b-a}\int^b_a f(t)dt\right)\le \frac{1}{b-a}\int^b_a \varphi(f(t))dt.\end{align*}

Solution: Soit $\{x_k=a+k\frac{b-a}{n}:k=0,1,\cdots,n\}$ une subdivision de l’intervalle $[a,b]$. Soit la somme de Riemann associée à $f,$\begin{align*}R_n=\frac{b-a}{n}\sum_{k=0}^{n-1}f(x_k).\end{align*}Comme $f$ est continue par morceaux, alors d’après le cours sur les intégrales de Riemann on a $f$ est intégrale au sens de Riemann et\begin{align*}\int^b_a f(t)dt=\lim_{n\to+\infty} R_n.\end{align*}Puisque $\varphi$ est une fonction continue alors on a aussi\begin{align*}\varphi\left(\frac{1}{b-a}\int^b_a f(t)dt\right)&=\lim_{n\to+\infty} \varphi\left(\frac{R_n}{b-a}\right)\cr & =\lim_{n\to+\infty} \varphi\left( \frac{1}{n}\sum_{k=0}^{n-1}f(x_k) \right).\end{align*}Comme $\varphi$ est convexe, alors\begin{align*}\varphi\left( \frac{1}{n}\sum_{k=0}^{n-1}f(x_k) \right)\le \frac{1}{n}\sum_{k=0}^{n-1}(\varphi\circ f)(x_k).\end{align*}D’autre par le fait que la fonction $\varphi\circ f$ est continue par morceaux implique que\begin{align*}\lim_{n\to+\infty} \varphi\left( \frac{1}{n}\sum_{k=0}^{n-1}f(x_k) \right)= \frac{1}{b-a}\int^b_a (\varphi\circ f)(t)dt.\end{align*}D’où le résultat.

Exercice: Soit $\{a_1,a_2,\cdots,a_n\}\subset\mathbb{R}^\ast_{+}$ et $\lambda_i\in [0,1]$ pour $i=1,\cdots,n$ de somme égale a $1$.

  1.  Montrer que \begin{align*} \prod_{i=1}^n a_i^{\lambda_i}\le \sum_{i=1}^n \lambda_i a_i. \end{align*}
  2. Montrer que \begin{align*} \sqrt[n]{a_1a_2\cdots a_n}\le \frac{a_1+a_2+\cdots+a_n}{n},\quad \forall n\in\mathbb{N}^\ast.\end{align*}
  3. Montrer que pour tout $A$ et $B$ reels positifs et $p,q\in ]1,+\infty[$ tel que $\frac{1}{p}+\frac{1}{q}=1,$ on a \begin{align*} AB\le \frac{A^p}{p}+\frac{B^q}{q}.\end{align*}
  4. Soit $\alpha,\beta\in [0,1]$ de somme égale a un. Montrer que \begin{align*} \sum_{i=1}^n a_i^{\alpha}b_i^{\beta}\le \left(\sum_{i=1}^n a_i\right)^\alpha\;\left(\sum_{i=1}^n b_i\right)^\beta.\end{align*}

Solution:

Laisser un commentaire

Your email address will not be published.

Latest from Blog

Loi Gamma

L’une des lois les plus pratiques est la loi gamma. Il est utilisé pour surveiller la