Nous proposons une preuve des inégalités de Hölder et Minkowski. L’inégalité de Cauchy-Schwarz est un cas particulier de celle de Hölder. Ces inégalités jouent un rôle important dans les preuves de nombreux théorèmes classiques. Ils aident également à donner de bonnes estimations mathématiques.
Table des matières
Inégalité de Hölder
Cette inégalité est très utile pour estimer des intégrales au sense de Riemann. On rappelle que Hölder est un mathématicien allemand né à Stuttgart (1859-1937).
Théorème (Hölder): Soient $a,b\in\mathbb{R},$ tels que $b>a$ et $f,g$ deux fonctions réelles ou complexes intégrable au sense de Riemann sur $[a,b]$. Soient $p,q\in \mathbb{R}^\ast_+$ tels que $\frac{1}{p}+\frac{1}{q}=1$. Montrer que \begin{align*}\int^a_b |f(t)g(t)|dt \le \left(\int^b_a |f(t)|^pdt\right)^{\frac{1}{p}}\left(\int^b_a |g(t)|^pdt\right)^{\frac{1}{q}}.\end{align*} Preuve: On pose \begin{align*} &\alpha:=\left(\int^b_a |f(t)|^pdt\right)^{\frac{1}{p}}\cr & \beta:=\left(\int^b_a |g(t)|^pdt\right)^{\frac{1}{q}}.\end{align*} On utilisant un exercice sur les applications des fonctions convexes, pour tout $u,v\in\mathbb{R}^+$, on a\begin{align*} uv\le \frac{u^p}{p}+\frac{v^q}{q}.\end{align*} Maintenant, pour $x\in [a,b]$ on pose $u=\frac{1}{\alpha}|f(x)|$ et $v=\frac{1}{\beta}|g(x)|$. Donc \begin{align*} \frac{1}{\alpha\beta}\int^b_a |f(x)g(x)|dx\le \frac{\alpha^p}{p\alpha^p}+\frac{\beta^q}{a\beta^q}=1.\end{align*} D’où le résultat.
Inégalité Minkowski
Theorem (Minkowski): Soit $f$ une fonction réelle ou complexe intégrable au sens de Riemann sur $[a,b]$. Pour tout réel $p\ge 1$, on définit \begin{align*}N_p(f):=\left(\int^b_a |f(t)|^pdt\right)^{\frac{1}{p}}.\end{align*}Montrer que l’inégalité de Minkowski suivante $N_p(f+g)\le N_p(f)+N_p(g)$ pour toute fonctions réelles ou complexes $f,g$ intégrables sur $[a,b]$.
Applications
Dans cette section nous donnons des applications sur inégalités de Hölder et Minkowski.