Exercices sur les intégrales impropres

1 min read
exercices-sur-les-integrales-impropres

On propose quelques exercices sur les intégrales impropres (intégrales généralisées). En effet, on propose toutes les types de convergences, à savoir, convergence simple, et convergence absolue. On donne aussi des exercices sur la relation entre intégrales généralisées et séries numériques.

Une sélection d’exercices sur les intégrales impropres

Exercice:

  1. Soint $a$ un réel, et $f:[a,+\infty[\to\mathbb{R}$ une application uniformément continue sur $[a,+\infty[$, telle que l’intégrale \begin{align*}\int^{+\infty}_a f(x)dx\end{align*}soit convergente.
  2. Application 1: Montrer que l’intégrale\begin{align*}\int^{+\infty}_0\sin(\sin(x))dx\end{align*}est divergente.
  3. Application 2: Montrer que l’intégrale $x\mapsto \sin(x^2)$ n’est pas uniformément continue sur $\mathbb{R}^+$.

Exercice:

  1. Soit $f:\mathbb{R}^+\to \mathbb{R}^+$ admettant une limite en $+\infty$. Montrer que si $a>0,$\begin{align*}\int^{+\infty}_0 (f(t+a)-f(t))dt\end{align*}converge.
  2. Calculer\begin{align*}\int^{+\infty}_0 (\arctan(t+a)-\arctan(t))dt.\end{align*}

Laisser un commentaire

Your email address will not be published.

Latest from Blog

Loi Gamma

L’une des lois les plus pratiques est la loi gamma. Il est utilisé pour surveiller la