Accueil Math I Exercices de développements limités

Exercices de développements limités

623

Nous proposons des exercices de développements limités et la formule de Taylor. C’est une technique pratique pour calculer les limites des fonctions. En effet, les polynômes étant faciles à manipuler notamment pour le calcul des limites; il est donc important de penser à approcher des fonctions régulières par des polynômes. C’est le rôle du développement limité.

Une sélection d’exercices corrigés de développements limités

Exercice: Etudier le développement limité de $f$ en $0$ dans les cas suivants:\begin{align*}1.; f(x)=\ln(1+x^2)\quad(\text{l’ordre}\;6),\qquad 2.; f(x)=\frac{\ln(1+x)}{x+1} \quad(\text{l’ordre}\;3).\end{align*}

Solution:

  1. On sait que le $DL_3(0)$ de la fonction $u\mapsto \ln(1+u)$ est donné par:\begin{align*}\ln(1+u)=u-\frac{u^2}{2}+\frac{u^3}{3}+o(u^3).\end{align*}En faisant le changement de variable $u=x^2,$ donc si $u$ est au voisinage de $0$ alors aussi $x^2$ est au voisinage de $0$, donc on a\begin{align*}\ln(1+x^2)&=x^2-\frac{(x^2)^2}{2}+\frac{(x^2)^3}{3}+o((x^2)^3)\cr & x^2-\frac{x^4}{2}+\frac{x^6}{3}+o(x^6).\end{align*}
  2. On sait que le $DL_3(0)$ de la fonction $x\mapsto \frac{1}{1+x}$ est donnée par\begin{align*}\frac{1}{1+x}=1-x+x^2-x^3+o(x^3).\end{align*}En utilise aussi le développement de $x\mapsto \ln(1+x)$ donner la la question 1, on trouve (dans la multiplication on grade que les puissances inférieures ou égale à $3$)\begin{align*}\frac{\ln(1+x)}{x+1}&=\left(x-\frac{x^2}{2}+\frac{x^3}{3}+o(u^3)\right)\cr & \hspace{1cm}\times (1-x+x^2-x^3+o(x^3))\cr &= x-\frac{3}{2}x^2+\frac{11}{6}x^3+o(x^3).\end{align*}

Exercice: On considère une fonction $f:[0,\frac{\pi}{2}]\to\mathbb{R}$ définie par  \begin{align*}f(x)=\begin{cases}\arccos\sqrt{\frac{x}{\tan(x)}},& x\in]0,\frac{\pi}{2}],\cr 0,& x=0.\end{cases}\end{align*} Déterminer le développement limité de $f$ à l’ordre $5$ au voisinage de $0$.

Solution: On pose $$u=1-\sqrt{\frac{x}{\tan(x)}}=\frac{\sqrt{\tan(x)}-\sqrt{x}}{\sqrt{\tan(x)}}.$$ Comme $\sqrt{w}=\frac{w}{2}+o(w)$, alors  $$ u\sim \frac{\tan(x)-x}{2x}\sim \frac{x^2}{6}.$$ On remarque que $$ f(x)=\arccos(1-u)=2\arcsin\sqrt{\frac{u}{2}}.$$ De plus on a $x>0,$ on a $$\sqrt{\frac{u}{2}}\sim \frac{x}{2\sqrt{3}}.$$ Ainsi le développement limite de $f$ existe. D’autre en utilisant les développement limités de $\tan(x)=x+\frac{x^3}{3}+\frac{2}{15}x^5+\frac{17}{315}x^7+O(x^9)$, on a \begin{align*}u&=1-\left(1+\frac{x^2}{3}+\frac{2}{15}x^4+\frac{17}{315}x^6\right)^{-\frac{1}{2}}\cr &= \frac{x^2}{6}+\frac{x^4}{40}+\frac{79}{15120}x^6+O(x^8).\end{align*} Ainsi \begin{align*} \sqrt{\frac{u}{2}}&= \frac{x}{2\sqrt{3}} \left(1+\frac{3x^2}{20}+\frac{79 x^4}{2520}\right)^{\frac{1}{2}}+O(x^7)\cr &=\frac{x}{2\sqrt{3}} \left(1+\frac{3x^2}{40}+\frac{2593 x^4}{201600}\right)+O(x^7):=v.\end{align*} Or \begin{align*} f(x)&=2\arcsin\sqrt{\frac{u}{2}}=2 \arcsin(v)\cr &= v+\frac{v^3}{6}+\frac{3v^5}{40}+O(v^7)\cr & = \frac{x}{\sqrt{3}}\left(1+\frac{4x^2}{45}+\frac{26 x^4}{1575}\right)+O(x^7).\end{align*}

Article précédentFonctions uniformément continues
Article suivantExercices corrigés sur le calcul matriciel