Exercices corrigés sur les développements limités

- Advertisement -

Découvrez une série complète d’exercices corrigés sur les développements limités, conçus pour affiner votre intuition quant au comportement local des fonctions. Perfectionnez vos compétences en manipulation des séries de Taylor et gagnez en confiance pour aborder avec succès des situations réelles en analyse mathématique. Préparez-vous à maîtriser cette puissante méthode d’approximation mathématique pour calcul des limites des fonctions.

Une sélection d’exercices de développements limités

Calcul de limites de fonctions

Exercice: Déterminer les limites suivantes

  1. $\displaystyle\lim_{x\to 0}\left( \frac{\tan(x)}{x}\right)^{\frac{1}{x^2}}$
  2. $\displaystyle\lim_{x\to 0}(1+\sin(x))^{\frac{1}{x}}$

  1. La fonction $\frac{\tan(x)}{x}$ est positive sur un voisinage très petit de $0$, à condition que ce voisinage soit exclu de $0$. Pour $x$ tres proche de $0$ on a $$ \ln\left(\left( \frac{\tan(x)}{x}\right)^{\frac{1}{x^2}} \right)=\frac{1}{x^2} \ln\left(\frac{\tan(x)}{x}\right).$$ Le développement limité de la fonction $\mapsto \tan(x)$ au point $0$ nous donne $$ \tan(x)=x+\frac{x^3}{3}+O(x^3).$$ Donc $$ \ln\left(\left( \frac{\tan(x)}{x}\right)^{\frac{1}{x^2}} \right)= \frac{1}{x^2}\ln(1+\frac{x^2}{3}+O(x)=\frac{1}{3}+O(x).$$ (Ici on a utiliser $\ln(u)\sim u$ si $n\to 0$). Ainsi $$ \lim_{x\to 0}\left( \frac{\tan(x)}{x}\right)^{\frac{1}{x^2}} =e^{\frac{1}{3}}.$$
  2. De même $$ \ln\left((1+\sin(x))^{\frac{1}{x}}\right)=\frac{1}{x} \ln(1+\sin(x)\sim \frac{\sin(x)}{x}.$$ Ainsi $$ \lim_{x\to 0}(1+\sin(x))^{\frac{1}{x}}=e.$$

Exercice: Etudier le développement limité de $f$ en $0$ dans les cas suivants:\begin{align*}1.\; f(x)=\ln(1+x^2)\quad(\text{l’ordre}\;6),\qquad 2.\; f(x)=\frac{\ln(1+x)}{x+1} \quad(\text{l’ordre}\;3).\end{align*}

  1. On sait que le $DL_3(0)$ de la fonction $u\mapsto \ln(1+u)$ est donné par:\begin{align*}\ln(1+u)=u-\frac{u^2}{2}+\frac{u^3}{3}+o(u^3).\end{align*}En faisant le changement de variable $u=x^2,$ donc si $u$ est au voisinage de $0$ alors aussi $x^2$ est au voisinage de $0$, donc on a\begin{align*}\ln(1+x^2)&=x^2-\frac{(x^2)^2}{2}+\frac{(x^2)^3}{3}+o((x^2)^3)\cr & x^2-\frac{x^4}{2}+\frac{x^6}{3}+o(x^6).\end{align*}
  2. On sait que le $DL_3(0)$ de la fonction $x\mapsto \frac{1}{1+x}$ est donnée par\begin{align*}\frac{1}{1+x}=1-x+x^2-x^3+o(x^3).\end{align*}En utilise aussi le développement de $x\mapsto \ln(1+x)$ donner la la question 1, on trouve (dans la multiplication on grade que les puissances inférieures ou égale à $3$)\begin{align*}\frac{\ln(1+x)}{x+1}&=\left(x-\frac{x^2}{2}+\frac{x^3}{3}+o(u^3)\right)\cr & \hspace{1cm}\times (1-x+x^2-x^3+o(x^3))\cr &= x-\frac{3}{2}x^2+\frac{11}{6}x^3+o(x^3).\end{align*}

Exercice: On considère une fonction $f:[0,\frac{\pi}{2}]\to\mathbb{R}$ définie par  \begin{align*}f(x)=\begin{cases}\arccos\sqrt{\frac{x}{\tan(x)}},& x\in]0,\frac{\pi}{2}],\cr 0,& x=0.\end{cases}\end{align*} Déterminer le développement limité de $f$ à l’ordre $5$ au voisinage de $0$.

On pose $$u=1-\sqrt{\frac{x}{\tan(x)}}=\frac{\sqrt{\tan(x)}-\sqrt{x}}{\sqrt{\tan(x)}}.$$ Comme $\sqrt{w}=\frac{w}{2}+o(w)$, alors  $$ u\sim \frac{\tan(x)-x}{2x}\sim \frac{x^2}{6}.$$ On remarque que $$ f(x)=\arccos(1-u)=2\arcsin\sqrt{\frac{u}{2}}.$$ De plus on a $x>0,$ on a $$\sqrt{\frac{u}{2}}\sim \frac{x}{2\sqrt{3}}.$$ Ainsi le développement limite de $f$ existe. D’autre en utilisant les développement limités de $\tan(x)=x+\frac{x^3}{3}+\frac{2}{15}x^5+\frac{17}{315}x^7+O(x^9)$, on a \begin{align*}u&=1-\left(1+\frac{x^2}{3}+\frac{2}{15}x^4+\frac{17}{315}x^6\right)^{-\frac{1}{2}}\cr &= \frac{x^2}{6}+\frac{x^4}{40}+\frac{79}{15120}x^6+O(x^8).\end{align*} Ainsi \begin{align*} \sqrt{\frac{u}{2}}&= \frac{x}{2\sqrt{3}} \left(1+\frac{3x^2}{20}+\frac{79 x^4}{2520}\right)^{\frac{1}{2}}+O(x^7)\cr &=\frac{x}{2\sqrt{3}} \left(1+\frac{3x^2}{40}+\frac{2593 x^4}{201600}\right)+O(x^7):=v.\end{align*} Or \begin{align*} f(x)&=2\arcsin\sqrt{\frac{u}{2}}=2 \arcsin(v)\cr &= v+\frac{v^3}{6}+\frac{3v^5}{40}+O(v^7)\cr & = \frac{x}{\sqrt{3}}\left(1+\frac{4x^2}{45}+\frac{26 x^4}{1575}\right)+O(x^7).\end{align*}

- Advertisement -

Hot this week

Raisonnement par Récurrence

Le raisonnement par récurrence est une méthode essentielle en...

Puissance d’un Nombre

La notion de puissance d’un nombre est fondamentale en...

Groupes quotients exercices corrigés

Les groupes quotients sont une notion fondamentale en algèbre,...

Groupes monogènes et cycliques

Entrez dans le monde des groupes monogènes et cycliques,...

 Applications linéaires: Cours

Les applications linéaires sont un concept fondamental en mathématiques,...

Topics

Raisonnement par Récurrence

Le raisonnement par récurrence est une méthode essentielle en...

Puissance d’un Nombre

La notion de puissance d’un nombre est fondamentale en...

Groupes quotients exercices corrigés

Les groupes quotients sont une notion fondamentale en algèbre,...

Groupes monogènes et cycliques

Entrez dans le monde des groupes monogènes et cycliques,...

 Applications linéaires: Cours

Les applications linéaires sont un concept fondamental en mathématiques,...

Suites de fonctions

Les suites de fonctions sont un sujet important en...

Résolution des systèmes linéaires

La résolution des systèmes linéaires est une tâche fondamentale...

Calcul des Primitives : Exercices Corrigés

Plongez dans le passionnant domaine du calcul des primitives...

Related Articles

Popular Categories

spot_img