Exercices corrigés sur les intégrales généralisées

exercices-corriges-integrales-generalisees


On propose des exercices corrigés sur les intégrales généralisées.  On trait des intégrales un intervalle non-borné ou intégrale d'une fonctions non définie aux bornes de l’intégrale. On dit aussi intégrale impropre. En particulier, on trait la convergence et semi-convergence des intégrales généralisées.   Surtout il faut faire différence entre les intégrales généralisées et et les intégrales de Riemann pour les fonctions bornées sur des compact de $\mathbb{R}$.

Exercices corrigés sur les intégrales généralisées et applications


Nous proposons des exercices de difficulté progressive pour couvrir toutes les matières des mathématiques, des classes préparatoires, ainsi que de la physique et de la chimie.


1- Exercices d'adaptation aux intégrales généralisées


Exercice: Nature et calcul (en utilisant une intégration par parties) des intégrales généralisées suivantes: $$ I=\int^{+\infty}_1 \ln\left(1+\frac{1}{t^2}\right)dt,\qquad J=\int^1_0 \frac{\ln(1-t^2)}{t^2}dt. $$

Solution: La fonction $f(t)= \ln\left(1+\frac{1}{t^2}\right)$ est continue sur $[1,+\infty[$. Soit alors $x\ge 1$. En utilisant intégration par partie, on trouve \begin{align*}\int^{+\infty}_1 \ln\left(1+\frac{1}{t^2}\right)dt&=\int^{+\infty}_1(t)’ \ln\left(1+\frac{1}{t^2}\right)dt\cr &= \left[t\ln\left(1+\frac{1}{t^2}\right)\right]^x_1-\int^x_1 t \frac{-\frac{2}{t^3}}{1+\frac{1}{t^2}} dt\cr &= x\ln\left(1+\frac{1}{x^2}\right)-\ln(2)+\int^x_1 \frac{2}{t^2+1}dt\cr &= x\ln\left(1+\frac{1}{x^2}\right)-\ln(2)+2\arctan(x)-\frac{\pi}{2}.\end{align*}On sait que \begin{align*}&\lim_{x\to+\infty} \frac{\ln\left(1+\frac{1}{x^2}\right)}{\frac{1}{x^2}}=1,\cr & \lim_{x\to+\infty} \arctan(x)=\frac{\pi}{2}.\end{align*}Then en fait tendre $x$ vers $+\infty,$ on trouve\begin{align*}I=\frac{\pi}{2}-\ln(2).\end{align*}

La fonction $g(t)=\frac{\ln(1-t^2)}{t^2}$ est bien définie et continue sur $]0,1[$ (ici on a un problème en $0$ et $1$). Pour faire une intégration par partie, il faut bien choisir une « bonne » primitive de la fonction $t\mapsto \frac{1}{t^2}$ (le choix de $\frac{-1}{t}$ n’est pas approprié!!! car on aurra des limites infini en $0$ et en $1$). Vue la forme de la fonction $t\mapsto \ln(1-t^2)$ nous allons choisir une primitive de $\frac{1}{t^2}$ de la forme $1-\frac{1}{t}=\frac{t-1}{t}$. On a alors\begin{align*}&\frac{t-1}{t}\ln(1-t^2)\;\underset{0}{\sim}\;t\cr & \frac{t-1}{t}\ln(1-t^2)\;\underset{1}{\sim}\;(t-1)\ln(1-t).\end{align*}Ce qui implique que le crochet\begin{align*}\left[\frac{t-1}{t}\ln(1-t^2)\right]^{t\to 1}_{t\to 0}=0.\end{align*}Donc on peut écrire\begin{align*}J&=\left[\frac{t-1}{t}\ln(1-t^2)\right]^{t\to 1}_{t\to 0}-\int^1_0 \frac{t-1}{t} \frac{-2t}{1-t^2}dt\cr &= -2\int^1_0 \frac{dt}{1+t}\cr &= -2\ln(2).\end{align*}

Exercice: Nature et calcul (en ulisant un changement de variables) des intégrales généralisées suivantes: $$ \mathbb{I}=\int^{+\infty}_{-\infty} \frac{dx}{x^2+x+1}dx,\qquad \mathbb{J}(s)=\int^{+\infty}_0 e^{-st}\sin(t)dt\quad (s>0). $$

Solution: Tout d’abord il faut remarquer que l’équation $x^2+x+1$ n’a pas de racines réelles. Donc la fonction $f(x)=\frac{1}{x^2+x+1}$ est bien définie et continue sur $\mathbb{R}$ de plus comme\begin{align*}f(x)\;\underset{\mp\infty}{\sim}\;\frac{1}{x^2},\end{align*}et les intégrales\begin{align*}\int^{+\infty}_1\frac{dx}{x^2}\quad\text{et}\quad\int^{-1}_{-\infty}\frac{dx}{x^2}\end{align*} sont convergente, alors la fonction $f$ est intégrable sur $\mathbb{R}$. Maintenant, on peut écrire\begin{align*}\int^{+\infty}_{-\infty}\frac{dx}{x^2+x+1}dx&=\int^{+\infty}_{-\infty}\frac{dt}{t^2+\frac{3}{4}}\cr & = \frac{4}{3}\int^{+\infty}_{-\infty}\frac{dt}{\frac{4}{3}t^2+1} \cr & = \frac{4}{3}\int^{+\infty}_{-\infty}\frac{dt}{\left(\frac{2\,t}{\sqrt{3}}\right)^2+1}.\end{align*}D’autre part, en faisant le changement de variable $u=\frac{2\,t}{\sqrt{3}}$, alors $dt=\frac{\sqrt{3}}{2}du$, on trouve \begin{align*}\mathbb{I}&=\frac{2}{\sqrt{3}}\int^{+\infty}_{-\infty}\frac{du}{u^2+1}\cr &=\frac{2}{\sqrt{3}}\left[\arctan(u)\right]^{+\infty}_{-\infty}\cr &= \frac{2\pi}{\sqrt{3}}.\end{align*}

Soit $s>0$. La fonction $h(t)=e^{-st}\sin(t)$ est bien définie et continue sur $[0,+\infty[$. D’autre part, pour tout $t\ge 0$ on a $$ |h(t)|\le e^{-s t} \quad \text{et}\quad \int^{+\infty}_0 e^{-s t}dt=\frac{1}{s}<+\infty. $$ Alors l’intégral de $h$ entre $0$ et $+\infty$ existe. De plus, comme $e^{it}=\cos(t)+i \sin(t)$, alors $\sin(t)={\rm Im}(e^{it})$. D’où \begin{align*}\mathbb{J}(s)&={\rm Im}\left(\int^{+\infty}_0 e^{(i-s)t}dt\right)\cr &={\rm Im}\left(\left[ \frac{ e^{(i-s)t}}{i-b}\right]^{+\infty}_0\right)\cr &= {\rm Im}\left(\frac{1}{s-i}\right)\cr &= {\rm Im}\left(\frac{s+i}{s^2+1}\right)\cr &= \frac{1}{1+s^2}.\end{align*}

Autre méthode: En utilisant une intégration par parties (deux fois) on trouve \begin{align*} \mathbb{J}(s)&=\int^{+\infty}_0 \left(-\frac{e^{-st}}{s}\right)’\sin(t)dt\cr &= \left[-\frac{e^{-st}}{s}\sin(t)\right]^{+\infty}_0 +\int^{+\infty}_0 \frac{e^{-st}}{s}\cos(t)dt\cr &=\frac{1}{s} \int^{+\infty}_0 e^{-st} \cos(t)dt\cr &= \frac{1}{s}\left( \left[-\frac{e^{-st}}{s}\cos(t)\right]^{+\infty}_0 -\int^{+\infty}_0 \frac{e^{-st}}{s}\sin(t)dt \right)\cr &= \frac{1}{s^2}-\frac{1}{s^2}\mathbb{J}(s).\end{align*}Donc $$ \mathbb{J}(s)+\frac{1}{s^2}\mathbb{J}(s)=\frac{1}{s^2}. $$ Ce qui donne $$ \mathbb{J}(s)=\frac{1}{1+s^2}. $$

Exerice: Nature de $$ \int^{+\infty}_1 \left(e-\left(1+\frac{1}{x}\right)^x\right)dx.$$

Solution: Pour $x\ge 1,$ $1+\frac{1}{x}$ est défini et strictement positif. Donc la fonction $f$ est définie et continue sur $[1,+\infty[$.  Le développement limite au voisinage de $+\infty$ (deux fois) nous donne \begin{align*}\left(1+\frac{1}{x}\right)^x&=e^{x\ln(1+\frac{1}{x})}\cr &= e^{1-\frac{1}{2x}+\circ(\frac{1}{x})}\cr &= e-\frac{e}{2x}+\circ(\frac{1}{x}).\end{align*}Ainsi \begin{align*}f(x)\equiv \frac{e}{2x} \quad (x\to+\infty).\end{align*}Puisque la fonction $x\mapsto \frac{e}{2x}$ est positive non intégrable au voisinage de $+\infty,$ alors $f$ n'est pas intégrable sur $[1,+\infty[$, donc l'intégrale et divergente .

Exercice: Etudier la nature de l'integrale generalisee suivante\begin{align*}\int^{+\infty}_0 \frac{\sin(x)}{x}dx.\end{align*}Solution: Soit $\varepsilon,r\in \mathbb{R}$ avec $0<\varepsilon<r$.Nous allons integres (en utilisant une integration par parties) la fonction $x\mapsto  \frac{\sin(x)}{x}$ sur $[\varepsilon,r]$. En effet, remarquons que les fonctions $x\mapsto 1-\cos(x)$ et $\mapsto \frac{1}{x}$ sont de classe $C1$ sur $[\varepsilon,r]$. Donc\begin{align*}\int^r_{\varepsilon}\frac{\sin(x)}{x} dx&=\left[\frac{1-\cos(x)}{x}\right]^r_{\varepsilon}+\int^r_{\varepsilon}\frac{1-\cos(x)}{x^2}dx\cr &= \frac{1-\cos(r)}{r}-\frac{1-\cos(\varepsilon)}{\varepsilon}+\int^r_{\varepsilon}\frac{1-\cos(x)}{x^2}dx.\end{align*}Il faut observer que la fonction $x\mapsto \frac{1-\cos(x)}{x^2}$ et continue sur $]0,+\infty[$ et que \begin{align*} \lim_{x\to 0}\frac{1-\cos(x)}{x^2}=\frac{1}{2}.\end{align*} Donc cette fonction admet un prolongement continue en $0$, et dominée par $\frac{1}{2}$. Donc \begin{align*}\int^{+\infty}_{0}\frac{1-\cos(x)}{x^2}dx<\infty.\end{align*}D'autre par, \begin{align*}|\frac{1-\cos(r)}{r}|\le \frac{1}{r}\underset{r\to+\infty}{\longrightarrow}0\end{align*}et que \begin{align*}\lim_{\varepsilon\to 0} \frac{1-\cos(\varepsilon)}{\varepsilon}=-\cos'(0)=0.\end{align*} Ainsi notre intégrale est convergente et que  \begin{align*}\int^{+\infty}_0 \frac{\sin(x)}{x}dx&=\int^{+\infty}_{0}\frac{1-\cos(x)}{x^2}dx\cr &= \int^{+\infty}_{0}\frac{2\sin^2(x/2)}{x^2}dx\cr & =\int^{+\infty}_0 \frac{\sin^2(u)}{u^2}du,\end{align*} par le changement de variable $u=\frac{x}{2}$.

Exercice: Discuter selon les valeurs de $\alpha>0$ la nature de \begin{align*}\int^{+\infty}_0 \frac{\sin(x)}{x^\alpha}dx.\end{align*}

Solution: Soit $f(x)=\frac{\sin(x)}{x^\alpha}$ pour tout $x\in ]0,+\infty[$.  On a $f$ est continue sur $ ]0,+\infty[$  et que $f>0$ sur $]0,1]$. Comme \begin{align*}\lim_{x\to 0^+}\frac{f(x)}{x^{1-\alpha}}=\lim_{x\to 0^+} \frac{\sin(x)}{x}=1,\end{align*} alors $f$ est équivalente en $0$ a $\frac{1}{x^{\alpha-1}}$. Ainsi \begin{align*} \int^1_0 f(x)dx<\infty \Longleftrightarrow \alpha-1<1 \Longleftrightarrow 0<\alpha<2.\end{align*}Maintenant pour $X>0,$ on a (bien sur les fonctions sous intégrale sont de classe $C^1([1,X])$ condition pour l'intégration par parties), \begin{align*}\int^X_1 \frac{\sin(x)}{x^a}dx&=\left[\frac{-\cos(x)}{x^\alpha}\right]^X_1- \alpha \int^X_1 \frac{\cos(x)}{x^{\alpha+1}}dx\cr &= -\frac{\cos(X)}{X^\alpha}+\cos(1)-\alpha \int^X_1 \frac{\sin(x)}{x^{a+1}}dx \end{align*}La fonction $X\mapsto  -\frac{\cos(X)}{X^\alpha}+\cos(1)$ tend vers $\cos(1)$ quand $X\to+\infty$. D'autre part,  $|\frac{\sin(x)}{x^{a+1}}|\le \frac{1}{x^{\alpha+1}}$ et que $\alpha+1>1,$ donc par comparaison pour tout $\alpha>0,$ on a \begin{align*}\int^{+\infty}_1 f(x)dx<\infty.\end{align*} Conclusion \begin{align*} \int^{+\infty}_0 \frac{\sin(x)}{x^\alpha}dx<\infty \Longleftrightarrow \forall \alpha\in ]0,2[.\end{align*}

Enregistrer un commentaire

Post a Comment (0)

Plus récente Plus ancienne

ça peut vous intéresser