Exercices sur la réduction des endomorphismes

- Advertisement -

Nous proposons des exercices sur la réduction des endomorphismes.  Calcul des valeurs propres et les vecteurs propres d’un endomorphisme. Notion de polynômes caractéristiques des endomorphismes.

Sélections d’exercices sur la réduction des endomorphismes

Exercice: Soit $f\in\mathcal{L}(\mathbb{R}^3)$ dont la matrice dans la base canonique $B_c=(e_1,e_2,e_3)$ est\begin{align*}A=\begin{pmatrix}2&0&4\\3&-4&12\\1&-2&5\end{pmatrix}.\end{align*}

  1. Montrer que $A$ est diagonalisable.
  2. Déterminer les sous-espaces propres de $f$.
  3. En déduire une base propre de $\mathbb{R}^3$ qu’on notera par la suite $B’$.
  4. Donner la nouvelle matrice de $f$ dans la base $B’$ qu’on notera $A’$, i.e. $A’={\rm mat}_{B’}(f)$.
  5. Déterminer la matrice $P$ de passage de la base $B$ à la base $B’$.
  6. Donner la formule de changement de base.
  7. Calculer les puissances $A^n$ pour tout $n\in\mathbb{N}$.

Solution:

  1. Soit $P$ le polynôme caractéristique de $A$, i.e. $P(\lambda)=\det(A-\lambda I_3)$. Un calcul standard du déterminant nous donne\begin{align*}P(\lambda)=-\lambda (\lambda-1)(\lambda-2).\end{align*} Donc la matrice $A$ possède trois valeurs propres simples $\lambda_0=0,\,\lambda_1=1$ et $\lambda_2=2$ (en dimension $3$), donc $A$ est diagonalisable. On rappel que l’ensemble des valeurs propres de $A$ est appelé le spectre de $A$ et ce note par $\sigma(A)$. Dans ce cas, on $$\sigma(A)=\{0,1,2\}={\lambda_0,\lambda_1,\lambda_2}.$$
- Advertisement -

Hot this week

Raisonnement par Récurrence

Le raisonnement par récurrence est une méthode essentielle en...

Puissance d’un Nombre

La notion de puissance d’un nombre est fondamentale en...

Groupes quotients exercices corrigés

Les groupes quotients sont une notion fondamentale en algèbre,...

Groupes monogènes et cycliques

Entrez dans le monde des groupes monogènes et cycliques,...

 Applications linéaires: Cours

Les applications linéaires sont un concept fondamental en mathématiques,...

Topics

Raisonnement par Récurrence

Le raisonnement par récurrence est une méthode essentielle en...

Puissance d’un Nombre

La notion de puissance d’un nombre est fondamentale en...

Groupes quotients exercices corrigés

Les groupes quotients sont une notion fondamentale en algèbre,...

Groupes monogènes et cycliques

Entrez dans le monde des groupes monogènes et cycliques,...

 Applications linéaires: Cours

Les applications linéaires sont un concept fondamental en mathématiques,...

Suites de fonctions

Les suites de fonctions sont un sujet important en...

Résolution des systèmes linéaires

La résolution des systèmes linéaires est une tâche fondamentale...

Calcul des Primitives : Exercices Corrigés

Plongez dans le passionnant domaine du calcul des primitives...

Related Articles

Popular Categories

spot_img