Exercices corrigés sur les polynômes

Date:

- Advertisement -

Nous proposons des exercices corrigés sur les polynômes et fractions rationnelles. En particulier, la division de deux polynômes et les propriétés de l’anneau des polynômes.

Paquet d’exercices corrigés sur les polynômes

Exercice: Déterminer les entiers $n\in\mathbb{N}$ avec $n\ge 3$ tel que le polynômes\begin{align*}P_n=(X-1)^n-(X^n-1)\in \mathbb{C}[X]\end{align*}ait au moins un zéro d’ordre au moins $2$.

Solution: Pour avoir un zéro d’ordre au moins $2$ il faut que $P_n(z)=P’_n(z)=0$. Ce qui est équivalent à $(z-1)^n-z^n+1=0$ et $(z-1)^{n-1}=z^{n-1}$. La deuxième équation implique $z^n=z(z-1)^{n-1}$. En remplace $z^n$ dans la première équation on a alors $(z-1)^{n-1}=1$. Ainsi avoir un zéro d’ordre au moins $2$ il faut et il suffit que $z^{n-1}=(z-1)^{n-1}=1$. Pour résoudre cette équation complexe on pose\begin{align*}w=\frac{z}{z-1}.\end{align*}On a donc $w^{n-1}=1$. D’où il existe $k\in \{0,1,\cdots,n-1\}$ tel que $w=e^{\frac{2ik\pi}{n-1}}$. Il faut exclure $w=1$ car l’équation $\frac{z}{z-1}=1$ n’a pas de solution. Ainsi notre $k$ est dans l’ensemble $\{1,\cdots,n-1\}$. Par un calcul simple on a $|z|=1$ et\begin{align*}z=\frac{w}{w-1}&=\frac{e^{\frac{2ik\pi}{n-1}}}{e^{\frac{2ik\pi}{n-1}}-1}\cr & =\frac{e^{\frac{ik\pi}{n-1}}}{e^{\frac{ik\pi}{n-1}}-e^{\frac{-ik\pi}{n-1}}}\cr &= \frac{e^{\frac{ik\pi}{n-1}}}{2i s\in\left(\frac{k\pi}{n-1}\right)}.\end{align*}Pour que $|z|=1$ il faut choisir un $n$ tel que $s\in\left(\frac{k\pi}{n-1}\right)=\frac{1}{2}$, c’est à dire $\frac{k}{n-1}=\frac{1}{6},$ ou encore $n=6k+1$.

Exercice: Soit $\alpha\in\mathbb{R}^\ast,$ et $P\in\mathbb{R}[X]$ un polynôme scindé et à zéros tous simples. Montrer que les zéros dans $\mathbb{C}$ de $P^2+\alpha^2$ sont tous simples.

Solution: Raisonnement par l’absurde. Supposons que le polynôme $P^2+\alpha^2$ admet au moins un zéros double noté $z$. Donc la dérivée de $P^2+\alpha^2$ en $z$ est nulle, soit $P(z)P'(z)=0$. Par hypothèse $P(z)\neq 0$ car les zéros de $P$ sont tous simple. On a alors $P'(z)=0$. D’autre part, $P’$ est scindé sur $\mathbb{R}$ ( décomposable en facteurs de degré 1 sur $\mathbb{R}$), donc $z\in \mathbb{R}$. Contradiction car $P^2+\alpha^2$ n’admet de zéro réel.

Exercice: Soient $p,q\in \mathbb{N}^\ast$. On note $r$ le reste de la division euclidienne de $p$ et $q$ dans $\mathbb{Z}$. Démontrer que le reste de la division euclidienne dans $\mathbb{K}[X]$ de $X^p-1$ par $X^q-1$ est $X^r-1$.

Solution: La question est de chercher un polynôme $A\in \mathbb{K}[X]$ tel que $X^p-1=A(X^q-1)+X^r-1$. Ce qui est équivalent à $A (X^q-1)=X^p-X^r$. D’après la division euclidienne de $p$ par $q$, il existe $a$ entier tel que $p=aq+r$. On a donc \begin{align*}X^p-X^r=(X^a)^q X^r-X^r= X^r \left((X^p)^a-1\right).\end{align*}Comme \begin{align*}(X^p)^a-1= (X^q-1)\left((X^q)^{a-1}+\cdots+1\right).\end{align*}Alors Alors on prend $A=(X^q)^{a-1+r}+(X^q)^{a-2+r}+\cdots+X^r$.

D’autres exercices sur le polynôme scindé.

- Advertisement -

LAISSER UN COMMENTAIRE

S'il vous plaît entrez votre commentaire!
S'il vous plaît entrez votre nom ici

Related articles

Raisonnement par Récurrence

Le raisonnement par récurrence est une méthode essentielle en mathématiques pour démontrer des propriétés ou des théorèmes concernant...

Puissance d’un Nombre

La notion de puissance d’un nombre est fondamentale en mathématiques, que ce soit pour simplifier des calculs, résoudre...

Groupes quotients exercices corrigés

Les groupes quotients sont une notion fondamentale en algèbre, jouant un rôle clé dans la théorie des groupes....

Groupes monogènes et cycliques

Entrez dans le monde des groupes monogènes et cycliques, deux concepts fondamentaux en algèbre. Ce cours offre un...