lesmath-logo-mathematiques

Arithmétique des entiers

Nous proposons des exercices corrigés d’arithmétique des entiers pour la classe de mathématiques supérieures. En effet, se sont des exercices sur la division euclidienne, sur la congruence et sur les nombres premiers. En fait, c’est une extension du cours vu au terminal des sciences mathématiques. Notez que l’Arithmétique intervient dans le calcul dans un anneau. Un des applications de l’Arithmétique est l’algorithme d’Euclide.

Sélection d’exercices corrigés d’arithmétique des entiers

Exercice: Montrer que $7$ divise $3^{2019}+4^{2019}$.

Solution: Remarquons que\begin{align*}4\equiv -3\;{\rm mod}\;7.\end{align*}Or $2019$ est impair, donc $4^{2019}\equiv -3^{2019}\;{\rm mod}\;7$. D’où le résultat.

Exercice: Soient $a,b\in\mathbb{Z}$ et $n\in\mathbb{N}^\ast$ tels que $a\equiv b \;{\rm mod}\;n.$ Montrer que\begin{align*}a^n\equiv b^n \;{\rm mod}\;n^2\end{align*}

Solution: Puisque $a\equiv b \;{\rm mod}\;n,$ alors il existe $k\in\mathbb{Z}$ tel que $a=b+kn$. En passe à la puissance $n,$ et on utilise la formule de binôme on trouve\begin{align*}a^n=(b+kn)^n&= \sum_{p=0}^n \binom{n}{p}b^{n-p} k^pn^p\cr &= b^n+\binom{n}{1}b^{n-1} kn+\sum_{p=2}^n \binom{n}{p}b^{n-p} k^pn^p.\end{align*}Mais $\binom{n}{1}=n,$ alors\begin{align*}a^n- b^n&=b^{n-1} kn^2+\sum_{p=2}^n \binom{n}{p}b^{n-p} k^pn^p\cr &= \left(b^{n-1} k+\sum_{p=2}^n \binom{n}{p}b^{n-p} k^pn^{p-2}\right)\;n^2\cr &= r n^2\end{align*}avec \begin{align*}r:=b^{n-1} k+\sum_{p=2}^n \binom{n}{p}b^{n-p} k^pn^{p-2}\in\mathbb{Z}.\end{align*}D’où le résultat.

Exercice: Montrer que quel que soit $n\in\mathbb{Z},$ on a $7$ devise $2^{4^n}+5$.

Solution: L’idée c’est le raisonnement par récurrence. En effet, pour $n=0$ on a $2^{4^0}+5=2+5=7,$ donc c’est vraie. Maintenant, supposons la propriété est vraie à l’ordre $n$. On a alors $2^{4^n}+5 \equiv 0 \;{\rm mod};7$. Comme $5\equiv -2 \;{\rm mod}\;7$, alors $2^{4^n} \equiv 2 \;{\rm mod}\;7$. D’autre part,\begin{align*}2^{4^{n+1}}=2^{4^n\times 4}= \left(2^{4^n}\right)^4\equiv 2^4 \;{\rm mod}\;7\equiv 2 \;{\rm mod}\;7.\end{align*}Ainsi $2^{4^{n+1}}+5 \equiv 0 \;{\rm mod};7$.

Subscribe our newsletter

  • Unlimited access to all
  • Paper Magazine delivery
  • Priority Support
Thank You, we'll be in touch soon.
lesmath-black-blog

LesMath est un blog spécialisé dans les mathématiques destiné aux élèves du secondaire et du supérieur, notamment aux classes préparatoires.

Navigation
Catégories