Exercices sur les anneaux et corps

On propose des exercices corrigés sur les anneaux et les corps. En fait, ce cours est généralement mal compris par les étudiants. C’est pourquoi nous avons suggéré des problèmes classiques que vous devez absolument connaître. En particulier, nous considérons des exercices sur les principaux idéaux et l’anneau des polynômes.

Exercice: Montrer que l’ensemble des nombres dyadiques $A=\{n2^{-p}:(n,p)\in\mathbb{Z}\times\mathbb{N}\}$ muni des lois usuelles est un anneau. Est-ce un coprs ?

Solution: L’idée chez de chercher un anneau connu (classique) qui contient $A$ et aprés montrer que $A$ est un sous anneau. En effet, on a $A\subset \mathbb{R}$ et que $(\mathbb{R},+,\times)$ est un anneau. Montrons alors que $A$ est un sous anneau de $\mathbb{R}$. Remarquons tout d’abord que $1=1\times 2^{-0}$. Soit maintenant $(x,y)\in A^2,$ il existent donc $(n,m)\in\mathbb{Z}^2$ et $(p,q)\in\mathbb{Z}^2$ tels que\begin{align*}x=n2^{-p}\quad\text{et}\quad y=m2^{-q}.\end{align*}Soit $r\in\mathbb{N}$ tel que $r\ge p$ et $r\ge q$, donc $r-p\in\mathbb{N}$ et $r-q\in \mathbb{N}$. On a\begin{align*}x-y&=n2^{-p}-m2^{-q}\cr &= (n2^{r-p} 2^{-r}-m2^{r-q} 2^{-r} \cr &= (n2^{r-p}-m2^{r-q})2^{-r}\cr &= s 2^{-r}\end{align*}avec $s=n2^{r-p}-m2^{r-q}\in\mathbb{Z}$. Ceci montre que $x-y\in A$. D’autre part,\begin{align*}xy=nm 2^{-(p+q)}.\end{align*}Comme $nm\in\mathbb{Z}$ et $p+q\in\mathbb{N},$ alors $xy\in A$. Ainsi $A$ est un sous anneau de $\mathbb{R},$ donc un anneau pour les lois usuelles.

Pour que $A$ soit un corps déjà il faut que tout élément $a\in A$ admet un inverse $a^{-1}\in A$. Remarquons que $7=7\times 2^{-0}\in A$. Supposons qu’il existent $n\in\mathbb{Z}$ et $p\in\mathbb{N}$ tels que $7^{-1}=n2^{-p}\in A$. Alors $2^p=7 n,$ ce qui implique que $7$ devise $2^p,$ ce n’est pas possible. Donc $7^{-1}\notin A$, d’où $A$ n’est pas un corps.

Enregistrer un commentaire

Post a Comment (0)

Plus récente Plus ancienne

ça peut vous intéresser