/

Fonctions lipschitziennes

10 mins read
fonctions-lipschitzennes

Les théorèmes de points fixe sont basés sur les fonctions contractante, une sous classe de fonctions lipschitziennes. Aussi la théorie des équations différentielles ordinaires non-linéaires est principalement basée sur les fonctions localement lipschitziennes. Ces fonctions sont dues à Rudolf Lipschitz.

Dans ce post nous faisons un rappel sur ces fonctions et présentons également des applications classiques.

Fonctions Lipchitziennes réelles

Définition: Soit $I$ un intervalle de $\mathbb{R}$. Une $f:I\to \mathbb{R}$ est dite $\gamma$-lipschitzienne sur $I$ si il existe un réel $\gamma>0$ tel que \begin{align*} |f(x)-f(y)|\le \gamma\; |x-y|,\quad\forall x,y\in I.\end{align*} Si de plus on a $\gamma\in ]0,1[$, alors $f$ est dite fonction contractante, ou une contraction.

Exercice: Montrer que les fonctions lipschitziennes sont uniformément continues.

Solution: Par hypothèse, il existe $\gamma>0$ tel que \begin{align*} |f(x)-f(y)|\le \gamma\; |x-y|,\quad\forall x,y\in I.\end{align*} Soit $\varepsilon>0$ et on pose $\alpha:=\frac{\varepsilon}{\gamma}$. Soit alors $x,y\in I$ tels que $|x-y|<\alpha$. Donc $\gamma |x-y|<\varepsilon$. Et par suite $|f(x)-f(y)|<\varepsilon$. Ce qu’il fallait démontrer.

Exercices: Soit $K$ un ensemble de $\mathbb{R}$ et $f:K\to\mathbb{R}$.

  1. On suppose que la fonction $f$ dérivables sur $I$ telle que il existe $M>0$ avec $|f'(t)|\le M$ pour tout $t\in K$ (c’est a dire $f’$ est bornée sur $K$). Montrer que $f$ est une fonction lipschitzienne sur $K$.
  2. On suppose que $K$ est compact et que $f$ est de classe $C^1$ sur $K$ ($f\in C^1(K)$). Montrer que $f$ est lipschitzienne sur $K$.

Solution: 1- Soit $x,y\in K$. On applique le théorème des accroissements finis a $f$ sur l intervalle d’extimités $x$ et $y$. Il existe donc $c$ strictement entre $x$ et $y$ tel que $f(x)-f(y)=f'(c)(x-y)$. Donc \begin{align*} |f(x)-f(y)|=|f'(c)||x-y|\le M\; |x-y|.\end{align*} 2- Comme $f\in C^1(K)$ alors $f’$ est continue sur le compact $K$. Donc $f’$ est bornée sur $K$. Donc $f$ est lipschitzienne sur $K$ d’après la question 1.

Remarque: Dans le cas ou $f$ est dérivable, pour montrer que $f$ est lipschitzienne il suffit de montrer que sa fonction dérivée est bornée.

Lipschitz dans le cadre vectoriel

La definition des fonctions lipschtziennes dans $(\mathbb{R},|\cdot|)$ reste aussi vrais le cadre d’un espace vectoriel normé $(E,\|\cdot\|)$, il suffit de remplacer dans la définition la valeur absolu $|\cdot|$ par la norme $\|\cdot\|$.

Exercice: Soient $a,\in\mathbb{R}$ avec $0<a<b$ et soit l’espace $\mathscr{C}([a,b])$ muni de la norme uniforme $\|f\|_\infty:=\sup_{t\in [a,b]}|f(t)|$. Soit l’application $T: \mathscr{C}([a,b])\to \mathbb{R}$ définie par \begin{align*} T(f)=\int^b_a \sin(f(t))dt,\qquad f\in \mathscr{C}([a,b]).\end{align*} Montrer que $f$ est une application lipschtizienne.

Solution: Rappelons tout d’abord que la fonction sinus $x\mapsto \sin(x)$ est une fonction Lipschtzienne sur $R$. Plus précisément nous avons $|\sin(x)-\sin(y)|\le |x-y|$ pour tout $x,y\in\mathbb{R}$. Maintenanat, soient $f,g\in \mathscr{C}([a,b]),$ alors \begin{align*}|T(f)-T(g)|&= \left| \int^b_a (\sin(f(t))-\sin(g(t)))dt\right|\cr & \le \int^b_a |\sin(f(t))-\sin(g(t))|dt \cr & \le \int^b_a |f(t)-g(t)|dt \cr & \le (b-a) \|f-g\|_\infty.\end{align*} Ainsi $T$ est $(b-a)$-lipschtzienne. Elle est contractante si de plus on a $0<b-a<1$.

Exercice: Soit $\mathscr{C}([0,1])$ muni de la norme uniforme $\|\cdot\|_\infty$ et $\varphi:\mathbb{R}\to\mathbb{R}$ une fonction $\gamma_r$-lipschitzenne sur $[-r,r]$ pour tour $r\ge 0$. Soit maintenanat $(F(u))(s)=\varphi(u(s))$ pour tout $s\in [0,1]$ et tout $u\in \mathscr{C}([0,1])$. Montrer que $F$ est une application lipschitzienne sur toutes les boules fermées de $\mathscr{C}([0,1])$. Puis montrer que $F$ est continue sur $\mathscr{C}([0,1])$.

Solution: Soient $u,v\in\overline{B}(0,r)$ pour un certain $r>0$. Donc $\|u\|_\infty,\|v\|_\infty<r$, ce qui implique que $|u(s)|\le r$ et $|v(s)|\le r$ pour tout $s\in [0,1]$. Comme $\varphi$ est $\gamma_r$-lipschitzienne sur $[-r,r],$ alors pour tout $s\in [0,1]$,\begin{align*}|\varphi(u(s))-\varphi(v(s))|\le \gamma_r |u(s)-v(s)|\le \gamma_r\|u-v\|_\infty.\end{align*} Ceci montre que pour tout $s\in [0,1],$ on a $|(F(u))(s)-(F(v))(s)|\le \gamma_r \|u-v\|_\infty$. Ainsi \begin{align*} \|F(u)-F(v)\|_\infty\le \gamma_r \|u-v\|_\infty.\end{align*} Pour montrer que $F$ est continue sur $\mathscr{C}([0,1])$, soit $(u_n)_n\subset X$ tel que $u_n\to u$ quand $n\to \infty$ pour la norme $\|\cdot\|_\infty$. On pose alors $R:=\sup_{n\in\mathbb{N}}\|u_n\|_\infty$. Par passge a la limite on a aussi $\|u\|_\infty\le R$. Comme $F$ est $\gamma_R$-lipschitzienne, alors pour tout $n,$ on a \begin{align*} \|F(u)-F(u_n)\|_\infty\le \gamma_R \|u-u_n\|_\infty.\end{align*} Comme $\|u-u_n\|_\infty\to 0,$ alors $\|F(u)-F(u_n)\|_\infty\to 0$ quand $n\to\infty$. Ainsi $F$ est continue sur $\mathscr{C}([0,1])$.

Exercice: Pour $\gamma>0$, on note par ${\rm Lip}_\gamma(0,1)$ l’espace des fonctions $\gamma$-lipschitziennes sur $[0,1]$. De plus on pose $\mathscr{D}_\gamma:=\{f\in \mathscr{C}^1([0,1]):\|f\|_\infty\le \gamma\}$.

  1. Montrer que $\mathscr{D}_\gamma\subset {\rm Lip}_\gamma(0,1)\subset \mathscr{C}([0,1])$.
  2. Montrer que ${\rm Lip}_\gamma(0,1)$ est fermé dans $\mathscr{C}([0,1])$ et que $\mathscr{D}_\gamma$ n’est pas fermé dans $\mathscr{C}([0,1])$.

Solution: 1- L’implication $\mathscr{D}_\gamma\subset {\rm Lip}_\gamma(0,1)$ découle facilement du théorème des accroissements finis (voir un exercice en haut de la page). L’autre implication est claire.

2- Soit $(f_n)_n\subset {\rm Lip}_\gamma(0,1)$ and $f\in \mathscr{C}([0,1])$ tel que $\|f_n-f\|_\infty\to 0$ quand $n\to\infty$. Comme la convergence uniforme de suites de fonctions implique la convergence simple, alors on a \begin{align*} |f(s)-f(t)|=\lim_{n\to\infty} |f_n(s)-f_n(t)|\le \gamma |s-t|,\quad \forall t,s\in [0,1].\end{align*} Donc $f\in {\rm Lip}_\gamma(0,1)$. Ainsi ${\rm Lip}_\gamma(0,1)$ est fermé dans $\mathscr{C}([0,1])$. Soit maintenant $f_n(s)=\gamma\,\sqrt{(s-\frac{1}{2})^2+\frac{1}{n}}$ pour tout $n\in\mathbb{N}^ast$ et $s\in [0,1]$. Il est facile de voir que $(f_n)_n\subset \mathscr{D}_\gamma$. De plus si $f(s)=\gamma |s-\frac{1}{2}|$ pour $s\in [0,1]$. Alors \begin{align*} |f_n(s)-f(s)|&=\gamma \frac{\frac{1}{n}}{\sqrt{(s-\frac{1}{2})^2+\frac{1}{n}}+|s-\frac{1}{2}|}\cr & \le \frac{\gamma}{n} \frac{1}{|s-\frac{1}{2}|}\le \frac{2\gamma}{n}.\end{align*} Ceci implique que $\|f_n-f\|_\infty\le \frac{2\gamma}{n}$ et donc $f_n\to f$ dans $\mathscr{C}([0,1])$. Mais $f$ n’est pas dérivable en $\frac{1}{2}$. Donc $f\not\in \mathscr{D}_\gamma$. Par suite $\mathscr{D}_\gamma$ n’est pas fermé dans $\mathscr{C}([0,1])$.

Laisser un commentaire

Your email address will not be published.

Latest from Blog

Loi Gamma

L’une des lois les plus pratiques est la loi gamma. Il est utilisé pour surveiller la