Nous proposons des exercices sur les suites de nombres réels. Des exercices corrigés sur les suites récurrentes et sur les valeurs d’adhérence d’une suite.
Table des matières
Exercices corrigés sur les suites de nombres réels
Exercice:
- Montrer que la suite suivante $$ A_n:=\frac{1}{1+|\cos(1)|}+ \frac{1}{1+|\cos(2)|\sqrt{2}}+\cdots+\frac{1}{1+|\cos(n)|\sqrt{n}} $$tend vers $+\infty$ quand $n\to+\infty$.
- Soit $\alpha\in \mathbb{R}$. Montrer que la suite suivante $$ v_n=\frac{E(\alpha \sqrt{n})}{\sqrt{n}} $$ est convergente et donner sa limite.
- Calculer les limites des suites suivantes $$ a_n:= \frac{2^n-3^n}{2^n+3^n},\qquad b_n:= \left(\frac{1}{n}+\frac{e^{-n^2}}{2}\sin(n^4)\right)^n. $$
Solution:
- On a $$ A_n=\sum_{k=1}^n \frac{1}{1+|\cos(k)|\sqrt{k}} $$ D’autre part, comme $|\cos(k)|\le 1$ et $\sqrt{k}\le \sqrt{n}$ pour tout $k=1,\cdots,n$, alors $1+|\cos(k)|\sqrt{k}\le 1+\sqrt{n}$. Donc $$ A_n\ge \sum_{k=1}^n \frac{1}{1+\sqrt{n}}= \frac{n}{1+\sqrt{n}}\underset{n\to\infty}{\longrightarrow}+\infty. $$ Ainsi $A_n\to+\infty$ quand $n\to+\infty$.
- On sait d’après les propriétés de la partie entière des nombres réels que $E(\alpha\sqrt{n})\le \alpha \sqrt{n} < E(\alpha\sqrt{n})+1 $. Ce qui donne $\alpha \sqrt{n}-1< E(\alpha\sqrt{n})\le \alpha \sqrt{n}$. Pour tout $n\ge 1$, on divsie par $\sqrt{n}$ et on trouve $$\alpha-\frac{1}{\sqrt{n}} < v_n\leq \alpha.$$ D’où $v_n\to \alpha$ quand $n\to+\infty$.
- On a \begin{align*}a_n&=\frac{3^n \left(\left(\frac{2}{3}\right)^n-1\right)}{3^n \left(\left(\frac{2}{3}\right)^n+1\right)} \cr & = \frac{\left(\frac{2}{3}\right)^n-1}{\left(\frac{2}{3}\right)^n+1}.\end{align*}comme $\left(\frac{2}{3}\right)^n\to 0$ quand $n\to +\infty,$ on a alors $a_n\to -1$ quand $n\to +\infty$. Pour la suite $(b_n)$, nous allons la majorée par une suite géométrique de raison dans $]0,1[$. En effet, comme nous allons tendre $n\to +\infty$, on prend par exemple $n\ge 2$. Comme $\frac{1}{n}\le \frac{1}{2},\;0 < e^{-n^2} < 1$ et $|\sin(n^4)|le 1$, alors alors \begin{align*}\left|\frac{1}{n}+\frac{e^{-n^2}}{2}\sin(n^4)\right|&\le \frac{1}{n}+ \frac{e^{-n^2}}{2}|\sin(n^4)|\cr &\le \frac{1}{2}+\frac{1}{2}=\frac{1}{4}.\end{align*}Donc $|b_n|\le \left(\frac{1}{4}\right)^n$. Ceci montre que $b_n\to 0$ quand $n\to +\infty$.
Exercice: ($\clubsuit\clubsuit$)Soit $F:\mathbb{R}\to \mathbb{R}$ une application telle qu’il existe $\gamma\in ]0,1[$ avec $|F(x)-F(y)|\le \gamma |x-y|$ pour tout $x,y\in\mathbb{R}$. Soit $u_0\in\mathbb{R}$ et $u_{n+1}=F(u_n)$ pour tout $n$. Montrer que la suite $(\frac{u_n}{n})_{n\ge 0}$ tend vers zero.
Solution: Premiere etape: Montrons que pour tout $n,$ $|u_{n+1}-u_{n}|\le a \gamma^n$ avec $a=|u_1-u_0|$. C’est vrai pour $n=0$. Supposons que c’est aussi vrai pour $n$. Alors \begin{align*}|u_{n+2}-u_{n+1}|&=|F(u_{n+1})-F(u_n)|&\le \gamma |u_{n+1}-u_n|\cr & \le \gamma a \gamma^n=a \gamma^{n+1}.\end{align*} Deuxieme etape: Montrons que $\frac{u_n}{n}\to 0$ quand $n\to\infty$. En effet, d’apres la premiere etape on a $|u_{n+1}-u_n|\to 0$ quand $n\to\infty$, car $\gamma^n\to 0$ puisque $\gamma\in]0,1[$. Ainsi pour tout $\varepsilon>0,$ il existe $N_0\in\mathbb{N}$ tel que pour tout $n\ge N_0$ on a $|u_{n+1}-n_n|\le \varepsilon$. Ceci implique $|u_n|\le |u_{N_0}|+(n-N_0)\varepsilon$ pour tout $n\ge N_0$. D’autre part, il est claire qu’il existe $N_1\in\mathbb{N}$ tel que $|\frac{u_{N_0}}{n}|\le \varepsilon$ pour tout $n\ge N_1$. Si on prend $N:=\max(N_0,N_1),$ alors pour tout $n\ge N$ on a \begin{align*} \left| \frac{u_n}{n}\right|\le \varepsilon+\left(1-\frac{N_0}{n}\right)\le 2\varepsilon.\end{align*}D’où le résultat.
Exercice : ($\clubsuit\clubsuit\clubsuit$) Soit $(u_n)_n$ une suite de nombres reels telle que $|u_n|$ ne tend pas vers $+\infty$ quand $n\to+\infty$. Montrer que $(u_n)_n$ admet au moins une valeur d’adherence.
Solution: Ici il faut faire attension, l’hypothese de l’exercice n’implique pas que la suite $(u_n)$ est bornee, et donc on peut pas directement utiliser le theoreme de Bolzano-Weierstrass. Mais tout de meme nous allons utiliser se theoreme indirectement. En fait, par hypothese, il existe un reel $M>0,$ tel que pour tout $N\in\mathbb{N},$ il existe $n_1\in\mathbb{N}$ tel que $n_1>N$ et $|u_{n_1}|\le M$. On repete la meme chose pour $n_1,$ il existe $n_2\in\mathbb{N}$ tel que $n_2>n_1$ et $|u_{n_2}|\le M$. Ainsi de suite pour tout $k$, il existe $n_k\in\mathbb{N}$, $n_k>n_{k-1}$ et $|u_{n_k}|\le M$. On a donc construit une application strictement croissante $\varphi:\mathbb{N}\to\mathbb{N}$ tel que $\varphi(k)=n_k$ pour tout $k$. On a donc $|u_{\varphi(n)}|\le M$ pour tout $n$. Si on pose $w_n=u_{\varphi(n)},$ alors $(w_n)_n$ est une suite bornée. Par suite, le Théorème de Bolzano-Weierstrass implique qu’il existe une application strictement croissante $\psi:\mathbb{N}\to\mathbb{N}$ et il existe un nombre réel $\lambda\in\mathbb{R}$ tel que $w_{\psi(n)}\to \lambda$ quand $n\to\infty$. Mais $w_{\psi(n)}=u_{\varphi(\psi(n))}=u_{\xi(n)}\to\lambda$ quand $n\to\infty,$ avec $\xi=\varphi\circ\psi:\mathbb{N}\to\mathbb{N}$ strictement croissante. Ainsi $\lambda$ est une valeur d’adherence de la suite $(u_n)_n$.
Exercice: ($\clubsuit\clubsuit$) Soit $(u_n)_n$ une suite de nombres réels. Montrer que si les sous suites $(u_{2n})_n,$ $(u_{3n})_n,$ et $(u_{2n+1})_n,$ converegent, alors la suite mère $(u_n)_n$ converge aussi.
Solution: Pour montrer que la suite $(u_n)_n$ converge il suffit de montrer que les sous suites $(u_{2n})$ et $(u_{2n+1})$ ont la même limite $\ell$. Comme les trois séquences $a_n:=(u_{2n})_n,$ $b_n:=(u_{3n})_n,$ et $c_n:=(u_{2n+1})_n$, convergent, alors l’idée est de construire des sous-suites communes à $(a_n)_n,$ $(b_n)_n,$ d’une part et a $(b_n)_n,$ $(c_n)_n,$ d’autre part. En effet, si nous choisissons une fonction strictement croissante $\varphi(n)=3n,$ alors $a_{\varphi(n)}=u_{6n}$ est une sous-suite de $(a_n)_n$. De plus si on prend une fonction strictement croissante $\psi(n)=2n,$ alors $b_\psi(n)=u_{6n}$ est une sous-suite de $(b_n)$. Ainsi On a $(u_{6n})$ est une sous-suite commune a $(a_n)_n$ et $(b_n)$. Donc $\lim_{n\to\infty} a_n=\lim_{n\to\infty}u_{6n}=\lim_{n\to\infty}b_n$. De la même façon on montre que $(u_{6n+3})_n$ est une sous-suite commune a $(b_n)_n$ et $(c_n)_n,$ ce qui montre que $\lim_{n\to\infty}b_n=\lim_{n\to\infty} c_n$. Alors les suites $(a_n)_n$ et $(b_n)_n$ ont même limite.
Exercice: Soit $g:[a,b]\to [a,b]$ une fonction continue vérifiant $$ |g(t)-g(s)|<|t-s|,\qquad \forall t,s\in [a,b],;t\neq s.$$
- Montrer qu’il existe un unique $\lambda\in [a,b]$ solution de l’équation $g(x)=x$.
- Soit la suite récurrente $v_0\in [a,b]$ et $v_{n+1}=g(v_n)$ pout tout $n\in\mathbb{N}$. Montrer que la suite $(|v_n-\lambda|)_n$ est monotone et est convergente vers une limite $\mu$.
- Montrer qu’il existe une sous-suite $(v_{\varphi(n)})$ de la suite $(v_n)$ telle que $v_{\varphi(n)}\to \rho$ avec $\rho=\lambda+\mu$ ou $\rho=\lambda-\mu$.
- Dans cette question on suppose que $\rho=\mu+\lambda$. En utilisant la question (1), montrer que $\mu=0$ et que $v_n\to \lambda$ quand $n\to+\infty$.
Solution:
- 1- Soit $h:[a,b]\to \mathbb{R}$ la fonction définie par $h(t)=g(t)-t$. Comme $g$ est continue sur $[a,b],$ alors $h$ est continue sur $[a,b]$. Puisque $g([a,b])\subset [a,b]$ alors $h(a)=g(a)-a\ge 0$ et $h(b)=g(b)-b\le 0$. Maintenant, par application du théorème des valeurs intermédiaires, il existe au moins $\lambda\in [a,b]$ tel que $h(\lambda)=0,$ et donc $g(\lambda)=\lambda$. Supposons qu’il existe un autre $\lambda’\in [a,b]$ tel que $\lambda’\neq\lambda$ et $g(\lambda’)=\lambda’$. Alors par l’inégalité en haut, on a $$ |\lambda-\lambda’|=|g(\lambda)-g(\lambda’)|< |\lambda-\lambda’|.$$ Absurde. Donc $\lambda=\lambda’$, c’est l’unicité!!
- Comme $g(\lambda)=\lambda,$ alors pour tout $n\in \mathbb{N}$ on a $$ |v_{n+1}-\lambda|=|g(v_n)-g(\lambda)|<|v_n-\lambda|. $$ Ce qui montre que la suite $(|v_n-\lambda|)$ est (strictement) décroissante. Comme les termes de cette suite sont tous positifs, alors la suite est minorée par $0$ et donc elle est convergente. Il existe donc un réel $mu\in\mathbb{R}^+$ tel que\begin{align*}\tag{$\Sigma$}\lim_{n\to +\infty} |v_n-\lambda|=\mu.\end{align*}
- Ici sans aucun doute il faut penser au Théorème de Bolzano-Weierstrass qui dit que de toute suite bornée dans $\mathbb{R}$ on peux extraire une sous-suite convergente. Pour réponde à la question, il suffit alors de remarquer que la suite $(v_n)$ est bornée puisue pour tout $n\ge 1$ on a $v_n=g(u_{n-1})\in [a,b]$. Donc la suite $(v_n)$ admet une sous-suite $(v_{\varphi(n)})$ qui converge vers un réel $\rho\in\mathbb{R}$. De plus on a $|v_{\varphi(n)}-\lambda|\to |\rho-\lambda|$ quand $n\to +\infty$ (car la fonction valeur absolue $t\mapsto |t|$ est continue sur $\mathbb{R}$). D’après ($\Sigma$) on a alors $|\rho-\lambda|=\mu$. Ceci implique $\rho-\lambda=\pm \mu$.
- On a $v_{\varphi(n)}\to \rho$ quand $n\to +\infty$. Comme $g$ est continue alors $v_{\varphi(n)+1}=g(v_{\varphi(n)})\to g(\rho)$ quand $n\to+\infty$. D’après ($\Sigma$) on a $|g(\rho)-\lambda |=\mu$. Maintenant, le point (1) implique $$ \mu=|g(\rho)-\lambda |=|g(\rho)-g(\lambda) |< |\rho-\lambda|=|\mu|. $$ Comme $|\mu|=\max\{\mu,-\mu\}$, alors $|\mu|=-\mu$ est donc $\mu\le 0$. Mais déjà on sait que $\mu\ge 0,$ car c’est la limite d’une suite de termes positifs. Ainsi $\mu=0$. On a donc $|v_n-\lambda|\to \mu=0$ quand $n\to +\infty$. En utilisant la définition de la limite d’une suite qui tend vers zéro, on trouve $v_n\to \lambda$ quand $n\to +\infty$.
Suites récurrence et suites de Cauchy
Exercice:
- Soit $(v_n)$ une suite de nombres réels tel qu’ils existent des constantes $\gamma\in ]0,1[$ et $c>0$ vérifiant $$ |v_{n+1}-v_n|\le c\gamma^n,\qquad \forall n\in\mathbb{N}. $$ Montrer que $(v_n)$ est une suite convergente.
- Soit $f:I\to \mathbb{R}$ une fonction telle que $f(I)\subset I$ et il existe $k\in ]0,1[$ tel que $$ |f(x)-f(y)|\le k |x-y|,\qquad \forall x,y\in I.$$ Montrer que la suite récurrente définie par $u_0\in I$ et $u_{n+1}=f(u_n)$ pour tout $n\in\mathbb{N}$ est convergente vers un $\ell\in I$ tel que $f(\ell)=\ell$.
Solution:
- Il suffit de montrer que $(v_n)$ est une suite de Cauchy. En effet, soient $p,n\in\mathbb{N}$. Il faut donc montrer que la distance $|v_{p+n}-v_n|$ désque $n$ dépasse un certain rang $n_0\in\mathbb{N}$. On sait déjà estimer la différence des termes d’indice successifs. L’idée donc est d’écrire $v_{p+n}-v_n$ comme somme de telle différence. Il faut ajouter et retrancher les mêmes termes \begin{align*}v_{p+n}-v_n&=(v_{p+n}-v_{p+n-1})+(v_{p+n-1}-v_{p+n-2})+\cdots+(v_{p+n-(p-1)}-v_{n})\cr &= (v_{p+n}-v_{p+n-1})+(v_{p+n-1}-v_{p+n-2})+\cdots+(v_{n+1}-v_{n}).\end{align*}En utilisant l’inégalité triangulaire on trouve\begin{align*}|v_{p+n}-v_n|& \leq |v_{p+n}-v_{p+n-1}|+|v_{p+n-1}-v_{p+n-2}|+\cdots+|v_{n+1)}-v_{n}| \cr & \le c \left(\gamma^{n+p-1}+\gamma^{n+p-2}+\cdots+\gamma^{n}\right)\cr & \le c \gamma^n \left(\gamma^{p-1}+\gamma^{p-2}+\cdots+1\right) \cr & \le c \gamma^n \frac{1-\gamma^p}{1-\gamma}.\end{align*}Comme $\gamma\in ]0,1[$ alors $0 < 1-\gamma^p < 1$. On a alors $$ |v_{p+n}-v_n|\leq \frac{c}{1-\gamma}\gamma^n. $$ On sait que $\gamma^n\to 0$ quand $n\to +\infty$ (suite géométrique de raison $\gamma\in ]0,1[$). Alors $|v_{p+n}-v_n|\to 0$ quand $n\to +\infty$. Donc for all $\varepsilon>0$ il existe $n_0\in \mathbb{N}$ tel que pour tout $p,n\in\mathbb{N}$, on a \begin{align*}n > n_0,\Longrightarrow, |v_{p+n}-v_n|< \varepsilon.\end{align*}Ceci montre que $(v_n)$ est une suite de Cauchy dans $\mathbb{R,}$ donc elle est convergente.
- Pour tout $n\in\mathbb{N}$ on: $$|u_{n+1}-u_n|=|f(u_n)-f(u_{n-1})|\le k |u_n-u_{n-1}|.$$ Aprés plusieurs itérations on trouve $$ |u_{n+1}-u_n|\le c k^n.$$ avec $c:=|u_1-u_0|$. Ainsi, d’après la question (1), la suite $(u_n)$ est convergente vers un élément $\ell\in \mathbb{R}$ telle que $\ell=f(\ell)$
Résumé du cours: Suites de nombres réels
On général pour vérifier qu’une suite de nombres réels est convergente, on utilise l’une des propriétés suivantes: