Exercices sur les suites de fonctions et applications

suites-fonctions


On propose des exercices sur les Suites de fonctions. Contrairement, aux suites numériques; on a deux types de convergence pour les suites de fonctions, à savoir, de convergence simple et uniforme.

Convergence simple et uniforme de suites de fonctions

Exercice: Soient $\gamma > 0$ et $(f_n)_n$ une suite de fonctions numériques définies sur $[0,+\infty[$ par \begin{align*}f_n(x)=n^\gamma x e^{-n x}.\end{align*}Montrer que la suite de fonctions $(f_n)_n$ converge simplement vers $0$ et converge uniformément sur $[a,+\infty[$ pour tout réel $a>0$. Pour quelles valeurs de $\gamma$ la convergence est-elle uniforme sur $\mathbb{R}^+$ ?

Solution: Tout d’abord, pour $x=0$ on a $f_n(0)=0$ pour tout $n$. D’autre part, pour $x>0$ on a $f_n(x)>0$ et que\begin{align*}\ln(f_n(x))=\gamma \ln(n)-n x+\ln(x).\end{align*}Alors $\ln(f_n(x))\to -\infty$ quand $n\to +\infty$. Et donc $f_n(x)=e^{\ln(f_n(x))}\to 0$ quand $n\to +\infty$. Donc $(f_n)_n$ converge simplment vers la fonction nulle sur $[0,+\infty[$. Pour étudier la convergence uniforme de la suite de fonctions $(f_n)_n$, il faut discuter les variation de la fonction $x\mapsto f_n(x)$. Pour chaque $n$, la fonction $f_n$ est dérivable sur $\mathbb{R}^+$ et que $f’_n(x)=n^\gamma (1-nx)e^{-n x}$ pour tout $x\in \mathbb{R}$. la fonction dérivée $f’_n$ s’annule au point $\frac{1}{n}$. La fonction $f_n$ est croissante sur $[0,\frac{1}{n}]$ est dércoit vers $0$ sur $[ \frac{1}{n},+\infty[$.

Maintenant, soit $a>0$. $f_n$ sera décroissante sur $[a,+\infty[$ si $n\ge \frac{1}{a}$ et dans ce cas on a $0\le f_n(x)\le f_n(a)$ pour tout $x\ge a$. On a alors\begin{align*}0\le \sup_{x\ge a}f_n(x)\le f_n(a).\end{align*}Puisque $f_n(a)\to 0$ alors la suite $(f_n)_n$ converge uniformément vers la fonction nulle sur $[a,+\infty[$. On a\begin{align*}\sup_{x\in\mathbb{R}^+} f_n(x)= f_n\left(\frac{1}{n}\right)= \frac{n^{1-\gamma}}{e}.\end{align*}Ainsi pour que la suite de fonctions $(f_n)_n$ converge uniformément vers $0$ sur $\mathbb{R}^+$ il faut que $n^{1-\gamma}$ tend vers $0$ quand $n\to+\infty$, et donc il faut que $\gamma\in ]0,1[$.

Enregistrer un commentaire

Post a Comment (0)

Plus récente Plus ancienne

ça peut vous intéresser