Etude de fonctions pour terminale S

etude-fonctions-lycee


Certes, l’étude des fonctions est une matière obligatoire et fondamentale pour les annales de baccalauréat. En fait, les problèmes sur l’étude des fonctions peuvent également contenir un mélange entre fonctions, intégrales et séquences; en particulier les suites récurrentes.

Problème: Soit $f$ la fonction numérique de la variable réelle $x$ définie par:\begin{align*}f(x)=\frac{4}{4x^2+8x+3}.\end{align*}

  1. Etudier les variations de $f$ et tracer sa courbe representative $(\mathscr{C})$ dans le plan rapporté à un repère orthonormé $(O,\vec{i},\vec{j})$.
  2. Déterminer deux réels $a$ et $b$ tels que:\begin{align*}f(x)=\frac{a}{2x+1}+\frac{b}{2x+3}.\end{align*}En déduire l’aire $A(\lambda)$ du domaine plan limité par $(\mathscr{C})$, l’axe des abscisses et les droites d’équations $x=0$ et $x=\lambda$ (avec $\lambda > 0$). Puis calculer\begin{align*}\lim_{\lambda\to +\infty} A(\lambda).\end{align*}
  3. On considère la suite $(u_n)$ définie par\begin{align*}u_n=f(n),\qquad \forall n\in\mathbb{N}.\end{align*}On pose\begin{align*}S_n=u_0+u_1+\cdots+u_n,\qquad \forall n\in \mathbb{N}.\end{align*}Calculer $S_n$ puis la $\underset{{n\to +\infty}}{\lim}S_n$.
  4. On considère la suite $(v_n)_n$ définie par\begin{align*}\forall n\in \mathbb{N},\qquad v_n=u_n-\int^{n+1}_nf(x)dx.\end{align*}On pose\begin{align*}w_n=v_0+v_1+\cdots v_n.\end{align*}Monter que \begin{align*}w_n=S_n-\int^{n+1}_nf(x)dx.\end{align*}Calculer $\underset{{n\to +\infty}}{\lim}w_n$.

Solution:

  1. Sens de variation de $f$: Déjà $f$ est définie si et seulement si $4x^2+8x+3\neq 0$. Ce qui équivalent à dire que $(2x+1)(2x+3)\neq 0$ et donc $f$ est bien définie sur\begin{align*}D_f=\mathbb{R}\backslash\left\{-\frac{1}{2},-\frac{3}{2}\right\}.\end{align*}De plus on a\begin{align*} &\lim_{x\to -\infty} f(x)=0,\qquad \lim_{x\to +\infty} f(x)=0\cr& \lim_{x\to -\frac{3}{2}^-} f(x)=+\infty,\qquad \lim_{x\to -\frac{3}{2}^+} f(x)=-\infty\cr&\lim_{x\to -\frac{1}{2}^-} f(x)=-\infty,\qquad \lim_{x\to -\frac{1}{2}^+} f(x)=+\infty.\end{align*} D’autre part, $f$ est dérivable sur $D_f$ et, pour tout $x\in D_f,$ on a\begin{align*}f'(x)&=\frac{4(-8x-8)}{(4x+8x+3)^2}\cr =&\frac{-32(x+1)}{(4x+8x+3)^2}.\end{align*}Donc $f'(x)$ est du signe de $-x-1$, donc $f$ est croissante sur $]-\infty,-\frac{3}{2}[\cup ]-\frac{3}{2},-1]$ est décroissante sur $[-1,-\frac{1}{2}[\cup ]-\frac{1}{2},+\infty[$.
  2. Calcul de $a$ et $b$: On a\begin{align*}f(x)&=\frac{a}{2x+1}+\frac{b}{2x+3}\cr &= \frac{a(2x+3)+b(2x+1)}{(2x+1)(2x+3)}\cr &= \frac{2(a+b)x+3a+b}{(2x+1)(2x+3)}.\end{align*}D’où en identifiant avec l’expression de\begin{align*}f(x)=\frac{4}{(2x+1)(2x+3)}.\end{align*}On a \begin{align*}\begin{cases} 2(a+b)=0,\cr 3a+b=4\end{cases}\; \Longleftrightarrow\;\begin{cases} a=-b\cr -2b=4\end{cases}.\end{align*}Ainsi $a=2$ et $b=-2,$ et donc On a\begin{align*}f(x)=\frac{2}{2x+1}-\frac{2}{2x+3}.\end{align*}Calculons l’aire $A(\lambda)$: On a\begin{align*}A(\lambda)&=\int^{\lambda}_0 f(x)dx\cr &=\int^\lambda_0 \left(\frac{2}{2x+1}-\frac{2}{2x+3}\right)dx\cr &=\left[\ln|2x+1|-\ln|2x+3|\right]^\lambda_0\cr &= \ln\left(\frac{2\lambda+1}{2\lambda+3}\right)+\ln(3).\end{align*}Comme \begin{align*}\lim_{\lambda\to +\infty} \frac{2\lambda+1}{2\lambda+3}=1.\end{align*}Alors \begin{align*}\lim_{\lambda\to +\infty}A(\lambda) = \ln(3).\end{align*}
  3. On a \begin{align*}u_n=f(n)=\frac{2}{2n+1}-\frac{2}{2n+3}.\end{align*}Donc \begin{align*}S_n&=u_0+u_1+\cdots+u_n\cr &= (2-\frac{2}{3})+(\frac{2}{3}-\frac{2}{5})+(\frac{2}{5}-\frac{2}{7})+\cr & \hspace{1cm} \cdots+(\frac{2}{2n+1}-\frac{2}{2n+3})\cr &= 2-\frac{2}{2n+3}.\end{align*}Ainsi \begin{align*}\lim_{n\to +\infty}S_n=2.\end{align*}
  4. En utilisant l’expression de $u_n$ et la relation de Chasles on trouve\begin{align*}w_n&=v_0+v_1+\cdots v_n\cr &= S_n-\int^{n+1}_0 f(x)dx\cr &= S_n-A(n+1).\end{align*}D’où \begin{align*}\lim_{n\to +\infty}w_n=2-\ln(3).\end{align*}

Enregistrer un commentaire

Post a Comment (0)

Plus récente Plus ancienne

ça peut vous intéresser